LEADER 01868oam 2200565 450 001 9910715341003321 005 20210607071604.0 035 $a(CKB)5470000002510625 035 $a(OCoLC)1240169768 035 $a(OCoLC)995470000002510625 035 $a(EXLCZ)995470000002510625 100 $a20210301j19651966 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputation of general planetary perturbations for resonance cases /$fby Edson F. Goodrich, Lloyd Carpenter 210 1$aGreenbelt, MD :$cGoddard Space Flight Center,$dMarch 1966 , February 1966, June 1965. 215 $a3 volumes 225 1 $aNASA/TM ;$vX-643-66-133 225 1 $aNASA/TN ;$vD-2852 225 1 $aNASA/TN ;$vD-3078 300 $a"March 1966." 300 $a"February 1966." 300 $a"June 1965." 320 $aIncludes bibliographical references. 327 $aPt. 1. --Computation of general planetary perturbations for resonance cases. Pt. 2. --A comparison of components. Pt. 3. --An expansion of the disturbing force. 517 0 $aComputation of general planetary perturbations 606 $aTrigonometry$2nasat 606 $aPerturbation$2nasat 606 $aResonance$2nasat 606 $aComputation$2nasat 615 7$aTrigonometry. 615 7$aPerturbation. 615 7$aResonance. 615 7$aComputation. 700 $aGoodrich$b Edson F.$01417624 702 $aCarpenter$b Lloyd$g(Lloyd William), 712 02$aGoddard Space Flight Center, 801 0$bGPO 801 1$bGPO 801 2$bOCLCO 801 2$bGPO 801 2$bOCLCO 801 2$bGPO 906 $aBOOK 912 $a9910715341003321 996 $aComputation of general planetary perturbations for resonance cases$93526627 997 $aUNINA LEADER 02973nam 22006255 450 001 9910591036903321 005 20251113204921.0 010 $a9789811936432$b(electronic bk.) 010 $z9789811936425 024 7 $a10.1007/978-981-19-3643-2 035 $a(MiAaPQ)EBC7080167 035 $a(Au-PeEL)EBL7080167 035 $a(CKB)24779281000041 035 $a(PPN)264960394 035 $a(OCoLC)1343955178 035 $a(DE-He213)978-981-19-3643-2 035 $a(EXLCZ)9924779281000041 100 $a20220902d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLinearization of Nonlinear Control Systems /$fby Hong-Gi Lee 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (591 pages) 225 1 $aMathematics and Statistics Series 300 $aIncludes index. 311 08$aPrint version: Lee, Hong-Gi Linearization of Nonlinear Control Systems Singapore : Springer,c2022 9789811936425 327 $a1 Introduction -- 2 Basic Mathematics for Linearization -- 3 Linearization by State Transformation -- 4 Feedback Linearization -- 5 Linearization with Output Equation -- 6 Dynamic Feedback Linearization -- 7 Linearization of Discrete-time Systems -- 8 Observer Error Linearization -- 9 Input-output Decoupling. 330 $aThis textbook helps graduate level student to understand easily the linearization of nonlinear control system. Differential geometry is essential to understand the linearization problems of the control nonlinear systems. In this book, the basics of differential geometry, needed in linearization, are explained on the Euclean space instead of the manifold for the students who are not accustomed to differential geometry. Many Lie algebra formulas, used often in linearization, are also provided with proof. The conditions in the linearization problems are complicated to check because the Lie bracket calculation of vector fields by hand needs much concetration and time. This book provides the MATLAB programs for most of the theorems. 410 0$aMathematics and Statistics Series 606 $aAutomatic control 606 $aSystem theory 606 $aControl theory 606 $aAlgebras, Linear 606 $aControl and Systems Theory 606 $aSystems Theory, Control 606 $aLinear Algebra 615 0$aAutomatic control. 615 0$aSystem theory. 615 0$aControl theory. 615 0$aAlgebras, Linear. 615 14$aControl and Systems Theory. 615 24$aSystems Theory, Control. 615 24$aLinear Algebra. 676 $a512.55 700 $aLee$b Hong-Gi$01256374 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910591036903321 996 $aLinearization of Nonlinear Control Systems$92912252 997 $aUNINA