LEADER 00924cam a2200253 i 4500 001 991001789409707536 005 20020507151742.0 008 000705s1996 fr 000 0 fre d 020 $a2902126255 035 $ab11564350-39ule_inst 035 $aLE02725238$9ExL 040 $aDip.to Studi Giuridici$bita 082 0 $a970 100 1 $aVal Julian, Carmel$0528610 245 13$aLa conquete de l'Amerique espagnole et la question du droit :$btextes reunis /$cpar Carmel Val Julian 260 $aFontenay :$bENS,$c1996 300 $a144 p. ;$c21 cm 490 0 $aFeuillets 907 $a.b11564350$b01-03-17$c02-07-02 912 $a991001789409707536 945 $aLE027 970.00 VAL01.01$g1$iLE027-7722$lle027$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1176742x$z02-07-02 996 $aConquete de l'Amerique espagnole et la question du droit$9895528 997 $aUNISALENTO 998 $ale027$b01-01-00$cm$da $e-$ffre$gfr $h3$i1 LEADER 03232nam 22006975 450 001 9910591033503321 005 20251009100200.0 010 $a3-030-99125-3 024 7 $a10.1007/978-3-030-99125-8 035 $a(MiAaPQ)EBC7080724 035 $a(Au-PeEL)EBL7080724 035 $a(CKB)24782713200041 035 $a(PPN)264955579 035 $a(DE-He213)978-3-030-99125-8 035 $a(OCoLC)1344159683 035 $a(EXLCZ)9924782713200041 100 $a20220905d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSharkovsky Ordering /$fby Alexander M. Blokh, Oleksandr M. Sharkovsky 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (114 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8201 311 08$aPrint version: Blokh, Alexander M. Sharkovsky Ordering Cham : Springer International Publishing AG,c2022 9783030991234 320 $aIncludes bibliographical references. 327 $aPreface -- 1 Coexistence of Cycles for Continuous Interval Maps -- 2 Combinatorial Dynamics on the Interval -- 3 Coexistence of Cycles for One-dimensional Spaces -- 4 Multidimensional Dynamical Systems -- 5 Historical Remarks -- 6 Appendix. 330 $aThis book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject. 410 0$aSpringerBriefs in Mathematics,$x2191-8201 606 $aDynamics 606 $aDifference equations 606 $aFunctional equations 606 $aTopology 606 $aMathematical physics 606 $aDynamical Systems 606 $aDifference and Functional Equations 606 $aTopology 606 $aMathematical Physics 615 0$aDynamics. 615 0$aDifference equations. 615 0$aFunctional equations. 615 0$aTopology. 615 0$aMathematical physics. 615 14$aDynamical Systems. 615 24$aDifference and Functional Equations. 615 24$aTopology. 615 24$aMathematical Physics. 676 $a514.322 676 $a515.35 700 $aBlokh$b Alexander M.$f1958-$01154927 702 $aSharkovsky$b Oleksandr M. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910591033503321 996 $aSharkovsky ordering$93005041 997 $aUNINA