LEADER 03694nam 22006735 450 001 9910591033203321 005 20251113193325.0 010 $a981-19-3273-5 024 7 $a10.1007/978-981-19-3273-1 035 $a(MiAaPQ)EBC7080413 035 $a(Au-PeEL)EBL7080413 035 $a(CKB)24779140600041 035 $a(PPN)264960211 035 $a(OCoLC)1343953756 035 $a(DE-He213)978-981-19-3273-1 035 $a(EXLCZ)9924779140600041 100 $a20220904d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSolution and Characteristic Analysis of Fractional-Order Chaotic Systems /$fby Kehui Sun, Shaobo He, Huihai Wang 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (254 pages) 225 1 $aPhysics and Astronomy Series 311 08$aPrint version: Sun, Kehui Solution and Characteristic Analysis of Fractional-Order Chaotic Systems Singapore : Springer,c2022 9789811932724 320 $aIncludes bibliographical references and index. 327 $aChapter 1: Introduction -- Chapter 2: Frequency-domain approximation method -- Chapter 3: Predictor-corrector algorithm -- Chapter 4: Adomian decomposition method -- Chapter 5: Performance comparison of solution algorithms -- Chapter 6: Dynamics of fractional-order chaotic systems -- Chapter 7: Complexity analysis of fractional-order chaotic system -- Chapter 8: Circuit design and realization of fractional-order chaotic system -- Chapter 9: Applications of fractional-order chaotic systems in secure communications -- Chapter 10: Solution and characteristic analysis of fractional-order discrete chaotic system. 330 $aThis book highlights the solution algorithms and characteristic analysis methods of fractional-order chaotic systems. Fractal dimensions exist broadly in the study of nature and the development of science and technology. Fractional calculus has become a hot research area in nonlinear science. Fractional-order chaotic systems are an important part of fractional calculus. The book discusses the numerical solution algorithms and characteristic analysis of fractional-order chaotic systems and introduces the techniques to implement the systems with circuits. To facilitate a quick grasp, the authors present examples from their years of work in the appendix. Intended for graduate students and researchers interested in chaotic systems, the book helps one to build a theoretical and experimental foundation for the application of fractional-order chaotic systems. 410 0$aPhysics and Astronomy Series 606 $aSystem theory 606 $aDynamics 606 $aMathematical physics 606 $aArtificial intelligence 606 $aComplex Systems 606 $aDynamical Systems 606 $aTheoretical, Mathematical and Computational Physics 606 $aArtificial Intelligence 615 0$aSystem theory. 615 0$aDynamics. 615 0$aMathematical physics. 615 0$aArtificial intelligence. 615 14$aComplex Systems. 615 24$aDynamical Systems. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aArtificial Intelligence. 676 $a515.83 700 $aSun$b Kehui$01112219 702 $aHe$b Shaobo 702 $aWang$b Huihai 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910591033203321 996 $aSolution and Characteristic Analysis of Fractional-Order Chaotic Systems$92912215 997 $aUNINA