LEADER 10922nam 22004813 450 001 9910590000303321 005 20220810080216.0 010 $a1-119-82796-5 010 $a1-119-82793-0 035 $a(MiAaPQ)EBC7070233 035 $a(Au-PeEL)EBL7070233 035 $a(CKB)24352857900041 035 $a(EXLCZ)9924352857900041 100 $a20220810d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMerging Optimization and Control in Power Systems $ePhysical and Cyber Restrictions in Distributed Frequency Control and Beyond 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2022. 210 4$dİ2022. 215 $a1 online resource (435 pages) 225 1 $aIEEE Press Series on Control Systems Theory and Applications Ser. 311 08$aPrint version: Wang, Zhaojian Merging Optimization and Control in Power Systems Newark : John Wiley & Sons, Incorporated,c2022 9781119827924 327 $aCover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Traditional Hierarchical Control Structure -- 1.1.1 Hierarchical Frequency Control -- 1.1.1.1 Primary Frequency Control -- 1.1.1.2 Secondary Frequency Control -- 1.1.1.3 Tertiary Frequency Control -- 1.1.2 Hierarchical Voltage Control -- 1.1.2.1 Primary Voltage Control -- 1.1.2.2 Secondary Voltage Control -- 1.1.2.3 Tertiary Voltage Control -- 1.2 Transitions and Challenges -- 1.3 Removing Central Coordinators: Distributed Coordination -- 1.3.1 Distributed Control -- 1.3.2 Distributed Optimization -- 1.4 Merging Optimization and Control -- 1.4.1 Optimization?Guided Control -- 1.4.2 Feedback?Based Optimization -- 1.5 Overview of the Book -- Bibliography -- Chapter 2 Preliminaries -- 2.1 Norm -- 2.1.1 Vector Norm -- 2.1.2 Matrix Norm -- 2.2 Graph Theory -- 2.2.1 Basic Concepts -- 2.2.2 Laplacian Matrix -- 2.3 Convex Optimization -- 2.3.1 Convex Set -- 2.3.1.1 Basic Concepts -- 2.3.1.2 Cone -- 2.3.2 Convex Function -- 2.3.2.1 Basic Concepts -- 2.3.2.2 Jensen's Inequality -- 2.3.3 Convex Programming -- 2.3.4 Duality -- 2.3.5 Saddle Point -- 2.3.6 KKT Conditions -- 2.4 Projection Operator -- 2.4.1 Basic Concepts -- 2.4.2 Projection Operator -- 2.5 Stability Theory -- 2.5.1 Lyapunov Stability -- 2.5.2 Invariance Principle -- 2.5.3 Input-Output Stability -- 2.6 Passivity and Dissipativity Theory -- 2.6.1 Passivity -- 2.6.2 Dissipativity -- 2.7 Power Flow Model -- 2.7.1 Nonlinear Power Flow -- 2.7.1.1 Bus Injection Model (BIM) -- 2.7.1.2 Branch Flow Model (BFM) -- 2.7.2 Linear Power Flow -- 2.7.2.1 DC Power Flow -- 2.7.2.2 Linearized Branch Flow -- 2.8 Power System Dynamics -- 2.8.1 Synchronous Generator Model -- 2.8.2 Inverter Model -- Bibliography -- Chapter 3 Bridging Control and Optimization in Distributed Optimal Frequency Control. 327 $a3.1 Background -- 3.1.1 Motivation -- 3.1.2 Summary -- 3.1.3 Organization -- 3.2 Power System Model -- 3.2.1 Generator Buses -- 3.2.2 Load Buses -- 3.2.3 Branch Flows -- 3.2.4 Dynamic Network Model -- 3.3 Design and Stability of Primary Frequency Control -- 3.3.1 Optimal Load Control -- 3.3.2 Main Results -- 3.3.3 Implications -- 3.4 Convergence Analysis -- 3.5 Case Studies -- 3.5.1 Test System -- 3.5.2 Simulation Results -- 3.6 Conclusion and Notes -- Bibliography -- Chapter 4 Physical Restrictions: Input Saturation in Secondary Frequency Control -- 4.1 Background -- 4.2 Power System Model -- 4.3 Control Design for Per?Node Power Balance -- 4.3.1 Control Goals -- 4.3.2 Decentralized Optimal Controller -- 4.3.3 Design Rationale -- 4.3.3.1 Primal-Dual Algorithms -- 4.3.3.2 Design of Controller (4.6) -- 4.4 Optimality and Uniqueness of Equilibrium -- 4.5 Stability Analysis -- 4.6 Case Studies -- 4.6.1 Test System -- 4.6.2 Simulation Results -- 4.6.2.1 Stability and Optimality -- 4.6.2.2 Dynamic Performance -- 4.6.2.3 Comparison with AGC -- 4.6.2.4 Digital Implementation -- 4.7 Conclusion and Notes -- Bibliography -- Chapter 5 Physical Restrictions: Line Flow Limits in Secondary Frequency Control -- 5.1 Background -- 5.2 Power System Model -- 5.3 Control Design for Network Power Balance -- 5.3.1 Control Goals -- 5.3.2 Distributed Optimal Controller -- 5.3.3 Design Rationale -- 5.3.3.1 Primal-Dual Gradient Algorithms -- 5.3.3.2 Controller Design -- 5.4 Optimality of Equilibrium -- 5.5 Asymptotic Stability -- 5.6 Case Studies -- 5.6.1 Test System -- 5.6.2 Simulation Results -- 5.6.2.1 Stability and Optimality -- 5.6.2.2 Dynamic Performance -- 5.6.2.3 Comparison with AGC -- 5.6.2.4 Congestion Analysis -- 5.6.2.5 Time Delay Analysis -- 5.7 Conclusion and Notes -- Bibliography. 327 $aChapter 6 Physical Restrictions: Nonsmoothness of Objective Functions in Load?Frequency Control -- 6.1 Background -- 6.2 Notations and Preliminaries -- 6.3 Power System Model -- 6.4 Control Design -- 6.4.1 Optimal Load Frequency Control Problem -- 6.4.2 Distributed Controller Design -- 6.5 Optimality and Convergence -- 6.5.1 Optimality -- 6.5.2 Convergence -- 6.6 Case Studies -- 6.6.1 Test System -- 6.6.2 Simulation Results -- 6.7 Conclusion and Notes -- Bibliography -- Chapter 7 Cyber Restrictions: Imperfect Communication in Power Control of Microgrids -- 7.1 Background -- 7.2 Preliminaries and Model -- 7.2.1 Notations and Preliminaries -- 7.2.2 Economic Dispatch Model -- 7.3 Distributed Control Algorithms -- 7.3.1 Synchronous Algorithm -- 7.3.2 Asynchronous Algorithm -- 7.4 Optimality and Convergence Analysis -- 7.4.1 Virtual Global Clock -- 7.4.2 Algorithm Reformulation -- 7.4.3 Optimality of Equilibrium -- 7.4.4 Convergence Analysis -- 7.5 Real?Time Implementation -- 7.5.1 Motivation and Main Idea -- 7.5.2 Real?Time ASDPD -- 7.5.2.1 AC MGs -- 7.5.2.2 DC Microgrids -- 7.5.3 Control Configuration -- 7.5.4 Optimality of the Implementation -- 7.6 Numerical Results -- 7.6.1 Test System -- 7.6.2 Non?identical Sampling Rates -- 7.6.3 Random Time Delays -- 7.6.4 Comparison with the Synchronous Algorithm -- 7.7 Experimental Results -- 7.8 Conclusion and Notes -- Bibliography -- Chapter 8 Cyber Restrictions: Imperfect Communication in Voltage Control of Active Distribution Networks -- 8.1 Background -- 8.2 Preliminaries and System Model -- 8.2.1 Note and Preliminaries -- 8.2.2 System Modeling -- 8.3 Problem Formulation -- 8.4 Asynchronous Voltage Control -- 8.5 Optimality and Convergence -- 8.5.1 Algorithm Reformulation -- 8.5.2 Optimality of Equilibrium -- 8.5.3 Convergence Analysis -- 8.6 Implementation -- 8.6.1 Communication Graph. 327 $a8.6.2 Online Implementation -- 8.7 Case Studies -- 8.7.1 8?Bus Feeder System -- 8.7.2 IEEE 123?Bus Feeder System -- 8.8 Conclusion and Notes -- Bibliography -- Chapter 9 Robustness and Adaptability: Unknown Disturbances in Load?Side Frequency Control -- 9.1 Background -- 9.2 Problem Formulation -- 9.2.1 Power Network -- 9.2.2 Power Imbalance -- 9.2.3 Equivalent Transformation of Power Imbalance -- 9.3 Controller Design -- 9.3.1 Controller for Known P?jin -- 9.3.2 Controller for Time?Varying Power Imbalance -- 9.3.3 Closed?Loop Dynamics -- 9.4 Equilibrium and Stability Analysis -- 9.4.1 Equilibrium -- 9.4.2 Asymptotic Stability -- 9.5 Robustness Analysis -- 9.5.1 Robustness Against Uncertain Parameters -- 9.5.2 Robustness Against Unknown Disturbances -- 9.6 Case Studies -- 9.6.1 System Configuration -- 9.6.2 Self?Generated Data -- 9.6.3 Performance Under Unknown Disturbances -- 9.6.4 Simulation with Real Data -- 9.6.5 Comparison with Existing Control Methods -- 9.7 Conclusion and Notes -- Bibliography -- Chapter 10 Robustness and Adaptability: Partial Control Coverage in Transient Frequency Control -- 10.1 Background -- 10.2 Structure?Preserving Model of Nonlinear Power System Dynamics -- 10.2.1 Power Network -- 10.2.2 Synchronous Generators -- 10.2.3 Dynamics of Voltage Phase Angles -- 10.2.4 Communication Network -- 10.3 Formulation of Optimal Frequency Control -- 10.3.1 Optimal Power?Sharing Among Controllable Generators -- 10.3.2 Equivalent Model With Virtual Load -- 10.4 Control Design -- 10.4.1 Controller for Controllable Generators -- 10.4.2 Active Power Dynamics of Uncontrollable Generators -- 10.4.3 Excitation Voltage Dynamics of Generators -- 10.5 Optimality and Stability -- 10.5.1 Optimality -- 10.5.2 Stability -- 10.6 Implementation With Frequency Measurement -- 10.6.1 Estimating ?i Using Frequency Feedback -- 10.6.2 Stability Analysis. 327 $a10.7 Case Studies -- 10.7.1 Test System and Data -- 10.7.2 Performance Under Small Disturbances -- 10.7.2.1 Equilibrium and its Optimality -- 10.7.2.2 Performance of Frequency Dynamics -- 10.7.3 Performance Under Large Disturbances -- 10.7.3.1 Generator Tripping -- 10.7.3.2 Short?Circuit Fault -- 10.8 Conclusion and Notes -- Bibliography -- Chapter 11 Robustness and Adaptability: Heterogeneity in Power Controls of DC Microgrids -- 11.1 Background -- 11.2 Network Model -- 11.3 Optimal Power Flow of DC Networks -- 11.3.1 OPF Model -- 11.3.2 Uniqueness of Optimal Solution -- 11.4 Control Design -- 11.4.1 Distributed Optimization Algorithm -- 11.4.2 Optimality of Equilibrium -- 11.4.3 Convergence Analysis -- 11.5 Implementation -- 11.6 Case Studies -- 11.6.1 Test System and Data -- 11.6.2 Accuracy Analysis -- 11.6.3 Dynamic Performance Verification -- 11.6.4 Performance in Plug?n?play Operations -- 11.7 Conclusion and Notes -- Bibliography -- Appendix A Typical Distributed Optimization Algorithms -- A.1 Consensus?Based Algorithms -- A.1.1 Consensus Algorithms -- A.1.2 Cutting?Plane Consensus Algorithm -- A.2 First?Order Gradient?Based Algorithms -- A.2.1 Dual Decomposition -- A.2.2 Alternating Direction Method of Multipliers -- A.2.3 Primal-Dual Gradient Algorithm -- A.2.4 Proximal Gradient Method -- A.3 Second?Order Newton?Based Algorithms -- A.3.1 Barrier Method -- A.3.2 Primal-Dual Interior?Point Method -- A.4 Zeroth?Order Online Algorithms -- Bibliography -- Appendix B Optimal Power Flow of Direct Current Networks -- B.1 Mathematical Model -- B.1.1 Formulation -- B.1.2 Equivalent Transformation -- B.2 Exactness of SOC Relaxation -- B.2.1 SOC Relaxation of OPF in DC Networks -- B.2.2 Assumptions -- B.2.3 Exactness of the SOC Relaxation -- B.2.4 Topological Independence -- B.2.5 Uniqueness of the Optimal Solution -- B.2.6 Branch Flow Model. 327 $aB.3 Case Studies. 410 0$aIEEE Press Series on Control Systems Theory and Applications Ser. 700 $aWang$b Zhaojian$01254146 701 $aZhao$b Changhong$01254147 701 $aLiu$b Feng$0429829 701 $aYang$b Peng$01073212 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910590000303321 996 $aMerging Optimization and Control in Power Systems$92908166 997 $aUNINA LEADER 05154nam 2200769Ia 450 001 9910956706703321 005 20250414173706.0 010 $a9781412990172 (ebook) :$dNo price 010 $a9781452279107 010 $a1452279101 010 $a9781322307558 010 $a1322307555 010 $a9781452210940 010 $a1452210942 010 $a9781412990172 010 $a1412990173 035 $a(CKB)2550000000112277 035 $a(EBL)996325 035 $a(OCoLC)809771704 035 $a(SSID)ssj0000675907 035 $a(PQKBManifestationID)12310550 035 $a(PQKBTitleCode)TC0000675907 035 $a(PQKBWorkID)10672037 035 $a(PQKB)11722862 035 $a(MiAaPQ)EBC996325 035 $a(OCoLC)654713552 035 $a(StDuBDS)EDZ0000018809 035 $a(PPN)227919769 035 $a226285 035 $a(EXLCZ)992550000000112277 100 $a20040609d2005 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aSourcebook of family theory & research /$feditors, Vern L. Bengtson ... [et al.] 205 $a1st ed. 210 $aThousand Oaks, Calif. $cSage$dc2005 215 $a1 online resource (xxii, 666 p.) $cill 300 $aDescription based upon print version of record. 311 08$a9781412940856 311 08$a1412940850 311 08$a9780761930655 311 08$a0761930655 320 $aIncludes bibliographical references and index. 327 $aCover Page; Title; Copyright; Contents; Foreword; Preface; Acknowledgments; Part I. Setting the Context for Future Family Research; 1. Theory and Theorizing in Family Research; Spotlight on Theory: Applying Kuhn's "Scientific Structure of Revolutions" to Family Science; Spotlight on Methods: The Cyclical Process of Theory and Data in Science; Case Study: The Use of Explicit Theory in Family Research: A Case Analysis of the Journal of Marriage and the Family, 1990-1999; Case Study: A Scientific Theory of the Family? 327 $aDiscussion and Extension: Theorizing Family: From the Particular to the General2. Contemporary and Emerging Theories in Studying Families; Spotlight on Theory: Application of Pepper's World Hypotheses to Family Theories: Hilary A. Rose; Spotlight on Theory: In Search of a Philosophical Foundation for Family Theory and Therapy; Case Study: Agony or Ecstasy? Evolving Theory and Methods of the Circumplex Model; Case Study: On the Use of Probability in Family Theory; 3. Contemporary and Emerging Research Methods in Studying Families 327 $aSpotlight on Methods: Asking New Questions of Existing Qualitative DataCase Study: Mixed Methods: Meaning and Validity in the Development of Self-Report Items for Children; Case Study: Analyzing Family Interaction Patterns From Videotapes Over Time; Discussion and Extension: Deductive Qualitative Analysis and Family Theory Building; Part II. Changing Family Patterns; 4. Explanations of Family Change: A Family Demographic Perspective; Spotlight on Theory: The New Demographics of Families 327 $aSpotlight on Methods: Does Marriage Make People Happier? Marriage, Cohabitation, and Trajectories in Well-BeingCase Study: Strengths and Resilience in Chinese Immigrant Families: An Initial Effort of Inquiry; Discussion and Extension: Family Change: Decline or Resilience?; 5. Family Composition and Family Transitions; Spotlight on Theory: Family Disruption-Chaos Versus Havoc: A Chaos Theory (Dynamical Systems) View of Family Structure and Change; Spotlight on Methods: Causal Analysis of Family Structure Effects; Case Study: Predicting Marital Success or Failure: Burgess and Beyond 327 $aDiscussion and Extension: The Adjustment of Children in Divorced and Remarried Families6. Decentering Heteronormativity: A Model for Family Studies; Case Study: Backward Socialization and Gay Identity Negotiation in Families; Case Study: Gay Marriage and Social Science; Discussion and Extension: Reflections on Queer Theory and Family Science; 7. Theorizing and Studying Sibling Ties in Adulthood; Spotlight on Theory: Theorizing About Sibling Relationships When Parents Become Frail; Spotlight on Methods: Twin Studies and Dementia; Case Study: Reaching Beyond the Dyad: Research on Adult Siblings 327 $aDiscussion and Extension: Sibling Relationships in Childhood: Implications for Life-Course Study 330 8 $aThis volume provides a diverse, eclectic, and paradoxically mature approach to theorizing and demonstrates how the development of theory is crucial to the future of family research. 517 3 $aSourcebook of family theory and research 606 $aFamilies$xResearch$xMethodology 606 $aSocial sciences$xResearch$xMethodology 615 0$aFamilies$xResearch$xMethodology. 615 0$aSocial sciences$xResearch$xMethodology. 676 $a306.85072 701 $aBengtson$b Vern L$0889818 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910956706703321 996 $aSourcebook of family theory & research$94365250 997 $aUNINA