LEADER 04963nam 2201225z- 450 001 9910585939503321 005 20231214133644.0 035 $a(CKB)5600000000483087 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/91223 035 $a(EXLCZ)995600000000483087 100 $a20202208d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNon-Newtonian Microfluidics 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (252 p.) 311 $a3-0365-4642-1 311 $a3-0365-4641-3 330 $aMicrofluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics?specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses. 606 $aTechnology: general issues$2bicssc 606 $aHistory of engineering & technology$2bicssc 610 $amicrofluidics 610 $aJanus droplet 610 $aOpenFOAM 610 $avolume of fluid method 610 $aadaptive dynamic mesh refinement 610 $ashear-thinning fluid 610 $aelectroosmosis 610 $aelastic instability 610 $anon-Newtonian fluid 610 $aOldroyd-B model 610 $aelectroosmotic flow 610 $amicromixing performance 610 $aheterogeneous surface potential 610 $awall obstacle 610 $apower-law fluid 610 $abvp4c 610 $aRK4 technique 610 $abrownian motion 610 $aporous rotating disk 610 $amaxwell nanofluid 610 $athermally radiative fluid 610 $avon karman transformation 610 $ahybrid nanofluid 610 $aentropy generation 610 $ainduced magnetic field 610 $aconvective boundary conditions 610 $athermal radiations 610 $astretching disk 610 $aviscoelastic material 610 $agroup similarity analysis 610 $athermal relaxation time 610 $aparametric investigation 610 $avariable magnetic field 610 $aerror analysis 610 $aviscoelastic fluid 610 $amicrofluid 610 $adirection-dependent 610 $aviscous dissipation 610 $achemical reaction 610 $afinite element procedure 610 $ahybrid nanoparticles 610 $aheat and mass transfer rates 610 $ajoule heating 610 $atri-hybrid nanoparticles 610 $aSoret and Dufour effect 610 $aboundary layer analysis 610 $afinite element scheme 610 $aheat generation 610 $aconstructive and destructive chemical reaction 610 $aparticle separation 610 $aviscoelastic flow 610 $ainertial focusing 610 $aspiral channel 610 $atransient two-layer flow 610 $apower-law nanofluid 610 $aheat transfer 610 $aLaplace transform 610 $ananoparticle volume fraction 610 $aeffective thermal conductivity 610 $afractal scaling 610 $aMonte Carlo 610 $aporous media 610 $apower-law model 610 $abioheat equation 610 $ahuman body 610 $adroplet deformation 610 $aviscoelasticity 610 $awettable surface 610 $adielectric field 610 $adroplet migration 610 $awettability gradient 615 7$aTechnology: general issues 615 7$aHistory of engineering & technology 700 $aMei$b Lanju$4edt$01314129 702 $aQian$b Shizhi$4edt 702 $aMei$b Lanju$4oth 702 $aQian$b Shizhi$4oth 906 $aBOOK 912 $a9910585939503321 996 $aNon-Newtonian Microfluidics$93031740 997 $aUNINA