LEADER 04034nam 2200925z- 450 001 9910585938603321 005 20231214133653.0 035 $a(CKB)5600000000483096 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/91230 035 $a(EXLCZ)995600000000483096 100 $a20202208d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHybrid Systems for Marine Energy Harvesting 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (182 p.) 311 $a3-0365-4627-8 311 $a3-0365-4628-6 330 $aTechnologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic. 606 $aTechnology: general issues$2bicssc 606 $aHistory of engineering & technology$2bicssc 610 $avertical axisymmetric floaters 610 $aarbitrary shape 610 $abreakwater 610 $adiffraction and radiation problem 610 $ahydrodynamic characteristics 610 $aadded mass 610 $adamping coefficient 610 $amarine renewable energy 610 $awind energy 610 $asolar energy 610 $aresource assessment 610 $ahybrid energy systems 610 $apower take-off damping 610 $awave power device 610 $aexperimental testing 610 $aPTO simulator 610 $auncertainty analysis 610 $awave energy testing 610 $aexperimental set-up 610 $acalibration 610 $aComputational Fluid Dynamics (CFD) modelling 610 $aphysical model testing 610 $aHybrid-Wave Energy Converter (HWEC) 610 $acomposite modelling approach 610 $aOscillating Water Column (OWC) 610 $aOvertopping Device (OTD) 610 $amulti-purpose breakwater 610 $awave power 610 $aoscillating buoy 610 $apower generation performance 610 $astanding waves 610 $aexperimental research 610 $aphysical modelling 610 $awave energy 610 $abreakwaters 610 $asafety 610 $aovertopping 610 $astability 610 $aoffshore wind energy 610 $aCECO 610 $aWindFloat Atlantic 610 $aco-located wind-wave farm 615 7$aTechnology: general issues 615 7$aHistory of engineering & technology 700 $aRosa-Santos$b Paulo Jorge$4edt$01318510 702 $aTaveira Pinto$b Francisco$4edt 702 $aLo?pez Gallego$b Mario$4edt 702 $aRodri?guez Castillo$b Claudio Alexis$4edt 702 $aRosa-Santos$b Paulo Jorge$4oth 702 $aTaveira Pinto$b Francisco$4oth 702 $aLo?pez Gallego$b Mario$4oth 702 $aRodri?guez Castillo$b Claudio Alexis$4oth 906 $aBOOK 912 $a9910585938603321 996 $aHybrid Systems for Marine Energy Harvesting$93033345 997 $aUNINA