LEADER 02034nam 2200457z- 450 001 9910584592303321 005 20231214132849.0 010 $a1000146388 035 $a(CKB)5580000000346211 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/90044 035 $a(EXLCZ)995580000000346211 100 $a20202207d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModeling of Dislocation$eGrain Boundary Interactions in Gradient Crystal Plasticity Theories 210 $aKarlsruhe$cKIT Scientific Publishing$d2022 215 $a1 electronic resource (186 p.) 225 1 $aSchriftenreihe Kontinuumsmechanik im Maschinenbau 311 $a3-7315-1196-7 330 $aA physically-based dislocation theory of plasticity is derived within an extended continuum mechanical context. Thermodynamically consistent flow rules at the grain boundaries are derived. With an analytical solution of a three-phase periodic laminate, dislocation pile-up at grain boundaries and dislocation transmission through the grain boundaries are investigated. For the finite element implementations, numerically efficient approaches are introduced based on accumulated field variables. 517 $aModeling of Dislocation 606 $aMechanical engineering & materials$2bicssc 610 $aGradienten-Kristallplastizität 610 $aErweiterte Kontinuumstheorie 610 $aKontinuumsversetzungstheorie 610 $aKorngrenzmodellierung 610 $aFinite Elemente Methode 610 $aGradient Crystal Plasticity 610 $aExtended Continuum Theory 610 $aContinuum Dislocation Theory 610 $aGrain Boundary Modeling 610 $aFinite Element Method 615 7$aMechanical engineering & materials 700 $aErdle$b Hannes$4auth$01327559 906 $aBOOK 912 $a9910584592303321 996 $aModeling of Dislocation$93038014 997 $aUNINA