LEADER 01814nam 2200421z- 450 001 9910584592003321 005 20231214132819.0 010 $a1000146434 035 $a(CKB)5580000000346214 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/90637 035 $a(EXLCZ)995580000000346214 100 $a20202208d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aProbabilistic Parametric Curves for Sequence Modeling 210 $aKarlsruhe$cKIT Scientific Publishing$d2022 215 $a1 electronic resource (226 p.) 225 1 $aKarlsruher Schriften zur Anthropomatik 311 $a3-7315-1198-3 330 $aThis work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation. 606 $aMaths for computer scientists$2bicssc 610 $aProbabilistische Sequenzmodellierung 610 $aStochastische Prozesse 610 $aNeuronale Netzwerke 610 $aParametrische Kurven 610 $aProbabilistic Sequence Modeling 610 $aStochastic Processes 610 $aNeural Networks 610 $aParametric Curves 615 7$aMaths for computer scientists 700 $aHug$b Ronny$4auth$01323289 906 $aBOOK 912 $a9910584592003321 996 $aProbabilistic Parametric Curves for Sequence Modeling$93035450 997 $aUNINA