LEADER 06045oam 2200733 450 001 9910583485603321 005 20230120002214.0 010 $a0-08-101414-7 010 $a1-78242-022-3 035 $a(CKB)3710000000321108 035 $a(EBL)1901693 035 $a(SSID)ssj0001431961 035 $a(PQKBManifestationID)11791791 035 $a(PQKBTitleCode)TC0001431961 035 $a(PQKBWorkID)11385291 035 $a(PQKB)11451969 035 $a(WaSeSS)IndRDA00069969 035 $a(CaSebORM)9781782420132 035 $a(MiAaPQ)EBC1901693 035 $a(EXLCZ)993710000000321108 100 $a20150112d2015 uy 0 101 0 $aeng 135 $aur|n#|||||||| 181 $ctxt$2rdacontent 181 $2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in batteries for medium and large-scale energy storage /$fChris Menictas, Maria Skyllas-Kazacos and Tuti Mariana Lim 205 $aFirst edition. 210 1$aSawston, [England] :$cWoodhead Publishing,$d[2015] 210 4$dİ2015 215 $a1 online resource (616 pages) $cillustrations 225 1 $aWoodhead Publishing Series in Energy ;$vNumber 67 300 $aDescription based upon print version of record. 311 $a1-336-00876-8 311 $a1-78242-013-4 320 $aIncludes bibliographical references and index at the end of each chapters. 327 $aFront Cover; Advances in Batteries for Medium- and Large-scale Energy Storage; Copyright; Contents; List of contributors; Woodhead Publishing Series in Energy; Part One: Introduction; Chapter 1: Electrochemical cells for medium- and large-scale energy storage: fundamentals; 1.1. Introduction; 1.2. Potential and capacity of an electrochemical cell; 1.2.1. Theoretical potential; 1.2.2. Actual cell potential; 1.2.2.1. Ohmic overpotential; 1.2.2.2. Activation overpotential; 1.2.2.3. Concentration overpotential; 1.2.3. Capacity; 1.2.3.1. Theoretical capacity and actual capacity 327 $a1.2.3.2. Capacity decay in secondary battery systems1.2.4. Other important parameters of electrochemical cells; 1.3. Electrochemical fundamentals in practical electrochemical cells; 1.3.1. Electrochemical fundamentals of the lithium-ion battery; 1.3.2. Electrochemical fundamentals of the redox flow battery; 1.3.3. Electrochemical fundamentals of the sodium battery; References; Chapter 2: Economics of batteries for medium- and large-scale energy storage; 2.1. Introduction; Case study1-small scale; Case study2-large scale; 2.2. Small-scale project; 2.2.1. Simulation inputs 327 $a2.2.1.1. Primary load data2.2.1.2. Solar resource and photovoltaic module; 2.2.1.3. Wind resource and turbine; 2.2.1.4. Energy storage systems; 2.2.1.4.1. Lead-acid battery: Surrette S4KS25P; 2.2.1.4.2. Vanadium redox flow battery; 2.2.1.5. Diesel generator; 2.2.1.6. Additional considerations; 2.2.2. Simulation results and discussion; 2.2.2.1. Energy storage system vs. diesel generator; 2.2.2.2. Flow-type battery (VRB) versus lead-acid battery; 2.3. Large-scale project; 2.3.1. Simulation inputs; 2.3.1.1. Primary load data; 2.3.1.2. Solar resource and photovoltaic module 327 $a2.3.1.3. Wind resource and turbine2.3.1.4. Energy storage system and additional considerations; 2.3.2. Simulation results and discussion; 2.3.2.1. Energy storage system (VRB) vs. diesel generator; 2.3.2.2. Vanadium redox flow battery vs. lead-acid battery; 2.4. Conclusions; References; Part Two: Lead, nickel, sodium, and lithium-based batteries; Chapter 3: Lead-acid batteries for medium- and large-scale energy storage; 3.1. Introduction; 3.2. Electrochemistry of the lead-acid battery; 3.3. Pb-acid battery designs; 3.4. Aging effects and failure mechanisms; 3.5. Advanced lead-acid batteries 327 $a3.6. Applications of lead-acid batteries in medium- and long-term energy storage3.7. Summary and future trends; References; Chapter 4: Nickel-based batteries for medium- and large-scale energy storage; 4.1. Introduction; 4.2. Basic battery chemistry; 4.2.1. Ni-Cd battery; 4.2.2. Ni-MH battery; 4.3. Battery development and applications; 4.3.1. Ni-Cd; 4.3.1.1. Positive and negative electrodes; 4.3.1.2. Classification; 4.3.1.3. Application; 4.3.2. Ni-MH battery; 4.3.2.1. Negative electrode; 4.3.2.2. Electrolyte and separator; 4.3.2.3. Construction; 4.3.2.4. Ni-Cd versus Ni-MH batteries 327 $a4.3.2.5. Low self-discharge Ni-MH batteries 330 $aAs energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage. Reviews advances in battery technologies and applications for medium and large-scale energy storage Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries Analyses design issues and applications of these technologies 410 0$aWoodhead Publishing in energy ;$vNumber 67. 606 $aElectric machinery 606 $aElectric batteries 606 $aElectric vehicles 606 $aEnergy storage 615 0$aElectric machinery. 615 0$aElectric batteries. 615 0$aElectric vehicles. 615 0$aEnergy storage. 676 $a621.31042 700 $aMenictas$b Chris$0878251 702 $aSkyllas-Kazacos$b M$g(Maria),$f1951-, 702 $aLim$b Tuti Mariana 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583485603321 996 $aAdvances in batteries for medium and large-scale energy storage$91960613 997 $aUNINA