LEADER 10585nam 2200469 450 001 9910583455703321 005 20230120002836.0 010 $a0-12-813249-3 035 $a(CKB)4100000007133028 035 $a(MiAaPQ)EBC5572418 035 $a(Au-PeEL)EBL5572418 035 $a(OCoLC)1064860698 035 $a(EXLCZ)994100000007133028 100 $a20181128d2019 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCarbon based nanofillers and their rubber nanocomposites $ecarbon nano-objects /$fedited by Srinivasarao Yaragalla, [and four others] 210 1$aAmsterdam, Netherlands :$cElsevier,$d2019. 215 $a1 online resource (404 pages) 311 $a0-12-813248-5 327 $aFront Cover -- Carbon-Based Nanofillers and Their Rubber Nanocomposites -- Copyright Page -- Contents -- List of Contributors -- 1. Synthesis, Characterization, and Applications of Carbon Nanotubes -- Future Perspectives -- 1.1 Introduction -- 1.2 Brief History of Carbon Nanotubes -- 1.2.1 Synthesis -- 1.2.1.1 Arc Discharge -- 1.2.1.2 Laser Ablation -- 1.2.1.3 Chemical Vapor Deposition -- 1.2.2 Properties -- 1.2.3 Characterization -- 1.2.3.1 Raman Spectroscopy -- 1.2.3.2 Fourier Transform Infrared Spectroscopy -- 1.2.3.3 X-Ray Photoelectron Spectroscopy -- 1.2.3.4 X-Ray Diffraction (XRD) -- 1.2.3.5 Thermogravimetric Analysis -- 1.2.3.6 Scanning Electron Microscopy -- 1.2.3.7 Transmission Electron Microscopy -- 1.2.3.8 Dispersion Analysis of CNT -- 1.3 Potential Applications of Carbon Nanotubes -- 1.3.1 Reinforcement in Polymer Nanocomposites -- 1.3.1.1 Synthesis of CNT-Based Nanocomposites -- 1.3.1.1.1 Melt Mixing -- 1.3.1.1.2 Solvent Casting -- 1.3.1.1.3 In Situ Polymerization -- 1.3.1.2 Carbon Nanotube-Reinforced Systems -- 1.3.1.2.1 Simulations and Modeling -- 1.3.1.2.2 Experimental Approach -- 1.3.2 Electronic Devices -- 1.3.3 Biological Applications -- 1.3.3.1 CNTs in Neuroscience -- 1.3.3.1.1 MWCNT and SWCNT Substrates for Neuronal Cell Growth -- 1.3.4 Important Barriers That Limit the Application of Carbon Nanotubes -- 1.4 Conclusions -- Acknowledgments -- References -- 2. An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes -- 2.1 Introduction -- 2.2 Synthesis of Carbon Nanotubes -- 2.2.1 Arc Discharge Process -- 2.2.2 Laser Ablation Process -- 2.2.3 CVD Process -- 2.2.4 Floating Catalyst CVD Process -- 2.2.5 Fluidized Bed CVD Process -- 2.3 Characterization of Carbon Nanotubes -- 2.3.1 Scanning Electron Microscopy -- 2.3.2 Transmission Electron Microscopy. 327 $a2.3.3 High-Resolution Transmission Electron Microscopy -- 2.3.4 Raman Spectroscopy -- 2.4 Applications of Carbon Nanotubes -- 2.5 Conclusions -- Acknowledgments -- References -- 3. Wet Functionalization of Carbon Nanotubes and Its Applications in Rubber Composites -- 3.1 Introduction to Carbon Nanotubes -- 3.2 Wet Functionalization of CNTs -- 3.2.1 Physical Functionalization -- 3.2.2 Chemical Functionalization -- 3.3 Application of Wet-Functionalized Carbon Nanotubes in Rubber Composites -- 3.3.1 Mechanical Properties -- 3.3.2 Thermal Properties -- 3.3.3 Electrical Properties -- 3.4 Conclusions and Perspectives -- References -- 4. Synthesized Carbon Nanotubes and Their Applications -- 4.1 Introduction -- 4.2 Chemically Modified Carbon Nanotubes -- 4.3 Ball Milling -- 4.4 Modification Using Microwave Technology -- 4.5 Electrochemically Assisted Covalent Modification -- 4.6 Electroless Deposition -- 4.7 Rubber Nanocomposites -- 4.8 Applications of Carbon Nanotubes in Recent Trends -- 4.9 Conclusion -- References -- Further Reading -- 5. Nanocrystalline Diamond: A High-Impact Carbon Nanomaterial for Multifunctional Applications Including as Nanofiller in... -- 5.1 General Features and Classification -- 5.1.1 Crystal Structure -- 5.1.2 Carbon Bonding -- 5.1.3 Graphite -- 5.1.4 Diamond-Like Carbon (DLC) -- 5.1.5 Diamond -- 5.1.6 Other Forms of Carbon -- 5.2 Synthesis of Diamond -- 5.2.1 High-Pressure High-Temperature Techniques -- 5.2.1.1 Kinetics and Growth -- 5.2.1.2 Transformation From Diamond to Graphite -- 5.2.2 Low-Pressure CVD Growth of Diamond Films -- 5.2.2.1 Introduction to CVD Diamond -- 5.2.2.2 Diamond Nucleation -- 5.2.2.3 Diamond Growth -- 5.2.2.3.1 Electromagnetic Excitation -- 5.2.2.3.2 Variations in Parameters, Precursors, and Pursuance of Growth -- 5.2.2.3.3 CVD Diamond Using Halogenated Precursors -- 5.2.2.3.4 Doped CVD Diamond. 327 $a5.2.2.3.4.1 CVD Doped Diamond Thin Film -- 5.2.2.3.4.2 Surface Transfer Doping -- 5.2.2.3.4.3 Doping by Vacuum Annealing -- 5.2.2.3.4.4 Doped Diamond in Electrochemistry -- 5.2.3 Ultrananocrystalline Diamond (UNCD) Film -- Classification With Nanocrystalline Diamond (NCD) and Microcrystalline Diam... -- 5.2.3.1 Synthesis of Ultrananocrystalline Diamond (UNCD) Films -- 5.2.3.1.1 Diluent Gas-Controlled Nucleation and Growth of UNCD Thin Films -- 5.2.3.1.1.1 Using H2 as a Diluent to the Precursor Gas -- 5.2.3.1.1.2 Using Ar as a Diluent to the Precursor Gas -- 5.2.3.1.2 Bias-Enhanced Nucleation and Growth of UNCD Thin Films -- 5.2.3.1.3 Doped (Boron) UNCD From H-Rich/Ar-Lean Gas System -- 5.3 Characteristics and Applications of Nanocrystalline Diamond -- 5.3.1 Bulk and Surface Properties of UNCD -- 5.3.2 Thermal Properties of UNCD -- 5.3.3 Dielectric Properties of UNCD -- 5.3.4 Electrical Properties of UNCD -- 5.3.5 Electron Emission Properties of UNCD -- 5.3.6 Diamond Nanostructures in Energy Storage Devices -- 5.3.7 Properties of UNCD Films as Bio-Inert Coating for Biomedical Applications -- 5.3.7.1 UNCD for Developmental Biology -- 5.3.7.2 Growth of Neurons on Diamond -- 5.3.7.3 Nanodiamond as a Drug Delivery System -- 5.3.7.4 Nanodiamond in the Polymeric System -- 5.3.7.5 Future Prospects -- 5.4 Summary and Conclusion -- References -- 6. Synthesis, Characterization, and Applications of Diamond Films -- 6.1 Introduction -- 6.2 Crystalline Forms of Carbon -- 6.2.1 Crystal Structure of Diamond -- 6.2.2 Crystal Structure of Graphite -- 6.3 Synthesis of Diamond -- 6.3.1 Natural Diamonds -- 6.3.2 High-Pressure High-Temperature Method -- 6.3.3 Detonation Nanodiamond -- 6.3.4 Chemical Vapor Deposition -- 6.4 The Substrate Materials -- 6.4.1 Substrates With Little Carbon Solubility -- 6.4.2 Substrates With Large Carbon Solubility. 327 $a6.4.3 Substrates Form Carbides -- 6.5 Diamond Deposition -- 6.5.1 Seeding -- 6.5.2 Hot Filament CVD -- 6.5.3 Growth Mechanism -- 6.5.4 Role of Hydrogen -- 6.6 SCD, MCD, and NCD -- 6.7 Physical Properties of Diamond -- 6.7.1 Mechanical Properties -- 6.7.2 Electrical Properties -- 6.7.3 Thermal Properties -- 6.7.4 Acoustic Properties -- 6.7.5 Optical Properties -- 6.8 Characterization of Diamond -- 6.8.1 X-Ray Diffraction -- 6.8.2 Raman Spectroscopy -- 6.8.3 Atomic Force Microscopy -- 6.8.4 Nanoindentation -- 6.8.5 Pin-on-Disc Test -- 6.9 Applications of Diamond -- 6.9.1 Mechanical Applications -- 6.9.2 Electronic Applications -- 6.9.3 Thermal Applications -- 6.9.4 Acoustic Applications -- 6.9.5 Optical Applications -- 6.9.6 Future Prospects -- 6.10 Summary -- References -- 7. Synthesis and Electrochemical Performance of Transition Metal-Coated Carbon Nanofibers on Ni Foam as Anode Materials ... -- 7.1 Introduction -- 7.2 Synthesis and Electrochemical Performance of Ruthenium Oxide-Coated CNFs on Ni Foam -- 7.2.1 Synthesis of Carbon Nanofibers -- 7.2.2 Preparation of Ruthenium Oxide-Coated Carbon Nanofibers -- 7.2.3 Fabrication Process of Anode Materials for Lithium Secondary Batteries -- 7.3 Analyses -- 7.3.1 Scanning Electron Microscopy -- 7.3.2 Raman Spectroscopy -- 7.3.3 X-Ray Photoelectron Spectroscopy -- 7.3.4 Cyclic Voltammetry -- 7.3.5 Cycle Performances -- 7.4 Synthesis and Electrochemical Performance of Transition Metals Oxide-Coated Carbon Nanofibers on Ni Foam -- 7.4.1 Transition Metal-Coated Carbon Nanofibers -- 7.4.2 Fabrication Process of Anode Materials for Lithium Secondary Batteries -- 7.5 Analyses -- 7.5.1 Scanning Electron Microscopy -- 7.5.2 Raman Spectroscopy -- 7.5.3 X-Ray Photoelectron Spectroscopy -- 7.5.4 Cyclic Voltammetry -- 7.5.5 Cycle Performances -- 7.6 Conclusion -- References. 327 $a8. Synthesis, Characterization, and Applications Carbon Nanofibers -- 8.1 Introduction -- 8.2 Synthesis of Carbon Nanofibers -- 8.2.1 Catalytic Chemical Vapor Deposition -- 8.2.2 Electrospinning -- 8.2.3 Templating -- 8.2.4 Drawing -- 8.2.5 Phase Separation -- 8.3 Comparison of VGCNFs and ECNFs -- 8.4 Properties of Carbon Nanofibers -- 8.5 Applications of Carbon Nanofibers -- 8.6 Conclusions and Future Perspectives -- References -- 9. Synthesis, Characterization, and Applications of Graphene and Derivatives -- 9.1 Introduction -- 9.2 Structure of Graphene -- 9.3 Electronic Properties of Graphene -- 9.4 Graphene and Derivatives Synthesis Techniques -- 9.4.1 Chemical Exfoliation by Modified Hummers Method -- 9.4.2 Electrochemical Exfoliation Method -- 9.4.3 Chemical Vapor Deposition -- 9.4.4 Microwave Irradiation Method -- 9.5 Characterizations of Graphene -- 9.5.1 Raman Spectroscopy -- 9.5.2 Ultraviolet Visible Spectroscopy (UV-Vis) -- 9.5.3 Transmission Electron Microscopy (TEM) -- 9.5.4 Scanning Electron Microscopy -- 9.5.5 X-Ray Diffraction (XRD) -- 9.6 Applications of Graphene and Its Derivatives -- 9.6.1 Sensors -- 9.6.2 Transistors -- 9.6.3 Energy Storage -- 9.6.4 Water Filtration -- 9.6.5 Solar Cells -- 9.6.6 Graphene-Based Elastomeric -- 9.7 Future Prospects and Conclusion -- Acknowledgments -- References -- 10. Wet Functionalization of Graphene and Its Applications in Rubber Composites -- 10.1 Introduction of Graphene -- 10.2 Wet Functionalization of Graphene -- 10.2.1 Physical Functionalization -- 10.2.2 Chemical Functionalization -- 10.3 Application of Wet-Functionalized Graphene in Rubber Composites -- 10.3.1 Mechanical Properties -- 10.3.2 Thermal Properties -- 10.3.3 Electrical Properties -- 10.4 Conclusions and Perspectives -- References. 327 $a11. Computational Homogenization of Anisotropic Carbon/Rubber Composites With Stochastic Interface Defects. 606 $aRubber 606 $aNanocomposites (Materials) 615 0$aRubber. 615 0$aNanocomposites (Materials) 676 $a678.2 702 $aYaragalla$b Srinivasarao 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583455703321 996 $aCarbon based nanofillers and their rubber nanocomposites$92068037 997 $aUNINA LEADER 04327nam 2200673Ia 450 001 9910957042403321 005 20251116175558.0 010 $a1-134-88232-7 010 $a1-280-02580-8 010 $a0-203-16930-1 035 $a(CKB)1000000000249837 035 $a(EBL)179375 035 $a(OCoLC)191662292 035 $a(SSID)ssj0000279337 035 $a(PQKBManifestationID)11216720 035 $a(PQKBTitleCode)TC0000279337 035 $a(PQKBWorkID)10267913 035 $a(PQKB)11275814 035 $a(MiAaPQ)EBC179375 035 $a(Au-PeEL)EBL179375 035 $a(CaPaEBR)ebr10100566 035 $a(CaONFJC)MIL2580 035 $a(EXLCZ)991000000000249837 100 $a19910103h19921990 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aExplaining explanation /$fDavid-Hillel Ruben 205 $a1st ed. 210 $aLondon ;$aNew York $cRoutledge$d1992, c1990 215 $a1 online resource (276 p.) 225 1 $aThe problems of philosophy : their past and present 300 $aFirst published in paperback 1992. 300 $aSeries editor: Ted Honderich. 311 08$a0-203-28573-5 311 08$a0-415-08765-1 320 $aIncludes bibliographical references and indexes. 327 $aCover; Explaining Explanation; Title Page; Copyright Page; Table of Contents; Preface and Acknowledgements; I Getting our Bearings; Some explanations; Process and product; The methodology of explaining explanation; Restricting the scope of the analysis; Scientific and ordinary explanation; Partial and full explanation; Bad explanations and no explanations; Some terminology; Theories of explanation; Dispensing with contrastives; II Plato on Explanation; The Phaedo; Platonic explanantia and explananda; Problems for the physical explainers; Some terminology; Plato's Principles; Plato's (PP2) 327 $aPlato's (PP1)The Theaetetus; Summary; III Aristotle on Explanation; The doctrine of the four causes; Does Aristotle have a general account of explanation?; Incidental and per se causes; Necessitation and laws in explanation; Aristotle on scientific explanation; Aristotle's demonstrations; Summary; IV Mill and Hempel on Explanation; Mill's account: laws of coexistence and succession; Mill's account: the symmetry thesis; Mill on ultimate explanations; Mill on deduction and explanation; Hempel's account of scientific explanation; Hempel's methodology; Hempel on the symmetry thesis 327 $aHempel on inductive-statistical explanationHempel on epistemic ambiguity; Summary; V The Ontology of Explanation; Explanation and epistemology; Extensionality and the slingshot; The relata of the explanation relation; Explaining facts; The non-extensionality of facts; Facts: worldly or wordy?; The co-typical predicate extensionality of facts; The name transparency of facts; VI Arguments, Laws, and Explanation; The standard counterexamples: irrelevance; The standard counterexamples: symmetry; A proposed cure and its problems: the causal condition; Generalizations get their revenge 327 $aVII A Realist Theory of ExplanationAre all singular explanations causal explanations?; What would make an explanation non-causal?; Identity and explanation; Are there other non-causal singular explanations?; Disposition explanations; Again: determinative, high and low dependency explanations; Notes; Bibliography; Name Index; Subject Index 330 $aThis book introduces readers to the topic of explanation. The insights of Plato, Aristotle, J.S. Mill and Carl Hempel are examined, and are used to argue against the view that explanation is merely a problem for the philosophy of science. Having established its importance for understanding knowledge in general, the book concludes with a bold and original explanation of explanation. 410 0$aProblems of philosophy (Routledge (Firm)) 606 $aKnowledge, Theory of 606 $aExplanation 615 0$aKnowledge, Theory of. 615 0$aExplanation. 676 $a121.4 676 $a160 700 $aRuben$b David-Hillel$0125075 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910957042403321 996 $aExplaining explanation$94475473 997 $aUNINA