LEADER 10070nam 2200433 450 001 9910583311003321 005 20230120002656.0 010 $a0-12-811181-X 035 $a(CKB)3790000000543729 035 $a(MiAaPQ)EBC5212768 035 $a(PPN)268740887 035 $a(EXLCZ)993790000000543729 100 $a20180201h20182018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aMagnetic, ferroelectric, and multiferroic metal oxides /$fedited by Biljana D. Stojanovic? 210 1$aAmsterdam, Netherlands :$cElsevier,$d2018. 210 4$dİ2018 215 $a1 online resource (618 pages) $cillustrations (some color) 225 0 $aMetal Oxides Series 311 $a0-12-811180-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aMachine generated contents note:$gpt. I$tFerroelectric Metal Oxides --$gSection I$tFerroelectrics: Fundamentals --$g1.$tGeneral view of ferroelectrics: Origin of ferroelectricity in metal oxide ferroelectrics and ferroelectric properties /$rJuras Banys --$g1.1.$tIntroduction --$g1.2.$tMacroscopic phenomenological theory of ferroelectric phase transitions --$g1.3.$tMicroscopic theory of ferroelectrics: the mean field --$g1.4.$tDynamic properties of ferroelectrics: theory --$g1.5.$tRaman, infrared, and dielectric spectroscopy of ferroelectrics --$g1.6.$tOther spectroscopic techniques --$g1.7.$tThe size and mechanical strain effect in ferroelectric ceramics and thin films --$g1.8.$tSummary --$tReferences --$g2.$tPerovskite and Aurivillius: Types of ferroelectric metal oxides /$rJelena D. Bobic --$g2.1.$tIntroduction --$g2.2.$tPerovskite structure --$g2.3.$tAurivillius type of ferroelectric metal oxides --$g2.4.$tSummary --$tReferences --$g3.$tLead-free perovskite ferroelectrics /$rBarbara Malic --$g3.1.$tIntroduction --$g3.2.$tAlkaline niobates --$g3.3.$tAlkaline bismuth titanates --$g3.4.$tBarium titanate-based piezoelectrics --$g3.5.$tConclusions --$tAcknowledgments --$tReferences --$g4.$tPerovskite layer-structured ferroelectrics /$rIdalci Cruvinel dos Reis --$g4.1.$tGeneral overview --$g4.2.$tPhysical properties --$tAcknowledgements --$tReferences --$gSection II$tFerroelectric Metal Oxides: Synthesis and Deposition --$g5.$tReview of methods for powder-based processing /$rJurij Koruza --$g5.1.$tIntroduction --$g5.2.$tSolid-state synthesis of ferroelectric perovskites --$g5.3.$tSintering of ferroelectric bulk ceramics --$g5.4.$tThick films --$tAcknowledgements --$tReferences --$g6.$tChemical synthesis and epitaxial growth methods for the preparation of ferroelectric ceramics and thin films /$rMaria A. Zaghete --$g6.1.$tIntroduction --$g6.2.$tChemical synthesis of ferroelectric ceramic powders --$g6.3.$tEpitaxial ferroelectric films: growth methods --$g6.4.$tConclusion --$tAcknowledgments --$tReferences --$g7.$tNanosized ferroelectrics: Preparation, properties, and applications /$rMaria A. Zaghete --$g7.1.$tSynthesis of nanostructured ferroelectrics --$g7.2.$tPiezoresponse force microscopy --$g7.3.$tPotential applications of nanosized ferroelectrics --$g7.4.$tFinal considerations --$tAcknowledgments --$tReferences --$g8.$tNanosized BaTiO3-based systems /$rCatalina-Andreea Stanciu --$g8.1.$tFundamentals of undoped BaTiO3 systems --$g8.2.$tState of the art of nanosized BaTiO3-based systems --$g8.3.$tRecent approach to nanosized BaTiO3-based systems --$g8.4.$tConclusions and trends --$tAcknowledgements --$tReferences --$g9.$tEcological, lead-free ferroelectrics /$rAmador M. Gonzalez --$g9.1.$tLead-free ferroelectrics --$g9.2.$tPreparation of lead-free piezoelectric ceramics with perovskite structure --$g9.3.$tProperties of lead-free piezoelectric ceramics --$g9.4.$tFuture trends in the development of lead-free ferropiezoelectric ceramics --$tReferences --$gSection III$tFerroelectric Metal Oxides Application --$g10.$tCompositionally-graded ferroelectric ceramics and multilayers for electronic and sensing applications /$rLucian Pintilie --$g10.1.$tReview of the current situation --$g10.2.$tRecent results --$g10.3.$tConclusions and trends --$tReferences --$g11.$tReview of the most common relaxor ferroelectrics and their applications /$rBiljana D. Stojanovic --$g11.1.$tIntroduction --$g11.2.$tLead-based perovskite relaxors --$g11.3.$tBismuth-layered perovskite relaxors --$tReferences --$tFurther reading --$g12.$tTunable ferroelectrics for frequency agile microwave and THz devices /$rJuan Hinojosa --$g12.1.$tIntroduction --$g12.2.$tTechniques for measuring permittivity at microwave frequencies --$g12.3.$tFerroelectrics at THz frequencies --$tReferences --$g13.$tPiezoelectric energy harvesting device based on quartz as a power generator /$rCarlos A. Fortulan --$g13.1.$tIntroduction --$g13.2.$tLow-power piezoelectric EH generator --$g13.3.$tProcess manufacturing and functional experiments of quartz EH --$g13.4.$tConclusion --$tReferences --$g14.$tNonvolatile memories /$rCarlos O. Paiva-Santos --$g14.1.$tIntroduction --$g14.2.$tNonvolatile memory device operation --$g14.3.$tRadio frequency-sputtered CaCu3Ti4O12 thin film --$g14.4.$tSpin-coated CaCu3Ti4O12 thin films --$tReferences --$gpt. II$tMagnetic and Multiferroic Metal Oxides --$gSection IV$tMagnetic Oxides: Ferromagnetics, Antiferromagnetics and Ferrimagnetics --$g15.$tTheory of ferrimagnetism and ferrimagnetic metal oxides /$rChuanhu Wang --$g15.1.$tIntroduction --$g15.2.$tMagnetic fields in materials --$g15.3.$tMagnetisms --$g15.4.$tFerrites --$g15.5.$tTheoretical aspects of ferrimagnetism --$g15.6.$tSummary --$tReferences --$g16.$tMetal oxide structure, crystal chemistry, and magnetic properties /$rSrdjan Rakic --$g16.1.$tMagnetic elements/ions --$g16.2.$tMagnetic oxides --$g16.3.$tMagnetism of magnetic oxides --$g16.4.$tRepresentative structures of magnetic oxides --$tReferences --$g17.$tReview of methods for the preparation of magnetic metal oxides /$rNikola I. Ilic --$g17.1.$tIntroduction --$g17.2.$tSynthesis of metal magnetic oxides --$g17.3.$tSynthesis of multiferroic materials --$g17.4.$tSummary --$tReferences --$g18.$tFerrite-based composites for microwave absorbing applications /$rChuanhu Wang --$g18.1.$tIntroduction --$g18.2.$tTheoretic considerations --$g18.3.$tBarium ferrite composites --$g18.4.$tConcluding remarks --$tReferences --$g19.$tSoft ferrite applications /$rGoran Radosavljevic --$g19.1.$tCharacterization of ferrite material --$g19.2.$tPassive ferrite components --$g19.3.$tFerrite sensors --$g19.4.$tConclusion --$tReferences --$g20.$tBiomedical applications /$rDusanka S. Mandic --$g20.1.$tIntroduction --$g20.2.$tBiomedical applications of magnetic oxides --$tReferences --$gSection V$tMultiferroics: Fundamentals --$g21.$tFerroelectric perovskite -- spinel ferrite ceramics /$rLiliana Mitoseriu --$g21.1.$tIntroduction --$g21.2.$tCeramic composites of Nb-doped Pb(Zr, Ti)O3 with MnFe2O4 --$g21.3.$tNb-doped Pb(Zr, Ti)O3-ferrite composites prepared by in situ sol-gel combustion method --$g21.4.$tConclusions --$tAcknowledgments --$tReferences --$g22.$tSingle-phase, composite and laminate multiferroics /$rAntonio Feteira --$g22.1.$tIntroduction --$g22.2.$tSingle-phase multiferroics --$g22.3.$tMagnetoelectric multiferroic composites --$g22.4.$tFinal remarks --$tReferences --$gSection VI$tMultiferroic Metal Oxides: Properties and Applications --$g23.$tSingle and heterostructure multiferroic thin films /$rAntoine Barbier --$g23.1.$tIntroduction --$g23.2.$tElements of thin-film growth: Thin films versus multiferroics --$g23.3.$tPertinence of multiferroic thin films: Multiferroics versus thin films --$g23.4.$tConclusion --$tReferences --$g24.$tBiFeO3 ceramics and thick films: Processing issues and electromechanical properties /$rAndreja Bencan --$g24.1.$tProcessing issues --$g24.2.$tPolarization switching, piezoelectricity, and local electrical conductivity --$tAcknowledgments --$tReferences --$g25.$tProperties of single multiferroics: Complex transition metal oxides /$rBiljana D. Stojanovic --$g25.1.$tIntroduction --$g25.2.$tClassification of single multiferroics --$g25.3.$tA-site driven ferroelectricity multiferroics --$g25.4.$tGeometrically driven ferroelectricity multiferroics --$g25.5.$tCharge ordering driven ferroelectricity multiferroics --$g25.6.$tType I multiferroics with complex or unknown origin of ferroelectricity --$g25.7.$tMagnetically driven ferroelectrics: Type II multiferroics --$g25.8.$tConclusion --$tReferences --$g26.$tBulk composite multiferroics: BaTi03-ferrites /$rBiljana D. Stojanovic --$g26.1.$tPreparation procedures of bulk multiferroics --$g26.2.$tFerroelectric-dependent electrical properties of the multiferroics --$g26.3.$tFerrite-dependent magnetic properties of multiferroics --$tReferences --$g27.$tComplex composites: Polymer matrix-ferroics or multiferroics /$rMirjana M. Vijatovic Petrovic --$g27.1.$tSummary --$tReferences --$g28.$tFerroelectric, ferromagnetic, and multiferroic heterostructures for possible applications as tunnel junctions /$rAshok Kumar --$g28.1.$tIntroduction --$g28.2.$tFerroelectric nonvolatile memories --$g28.3.$tFerroelectric tunnel junctions --$g28.4.$tCritical thickness for the existence of ferroelectricity --$g28.5.$tMagnetic tunnel junctions --$g28.6.$tMultiferroic tunnel junctions --$g28.7.$tMultiferroic heterostructure-based tunnel junctions --$g28.8.$tTunneling electroresistance for the realization of nondestructive ferroelectric polarization readout --$g28.9.$tAdvantages of band excitation over single frequency excitation piezoresponse force microscopy --$g28.10.$tSummary and outlook --$tReferences. 606 $aMetallic oxides 606 $aIron oxides 615 0$aMetallic oxides. 615 0$aIron oxides. 676 $a549.5 702 $aStojanovic?$b Biljana D. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583311003321 996 $aMagnetic, ferroelectric, and multiferroic metal oxides$92030966 997 $aUNINA