LEADER 05478nam 2200517 450 001 9910583303503321 005 20230120002540.0 035 $a(CKB)3710000001118642 035 $a(CaSebORM)9780128112137 035 $a(MiAaPQ)EBC4827702 035 $a(EXLCZ)993710000001118642 100 $a20170407h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMicroforming technology $etheory, simulation and practice /$fZhengyi Jiang, Jingwei Zhao and Haibo Xie 205 $a1st edition 210 1$aLondon, England :$cAcademic Press,$d2017. 210 4$dİ2017 215 $a1 online resource (453 pages) $ccolor illustrations 311 $a0-12-811212-3 311 $a0-12-811213-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aFront Cover; Microforming Technology; Copyright Page; Contents; Foreword; Preface; I. Introductory Overview; 1 Fundamentals of Microforming; 1.1 Microforming Concept; 1.2 Microforming System; 1.3 Microforming Methods and Processes; 1.3.1 Micro Rolling; 1.3.1.1 Micro Cross Wedge Rolling; 1.3.1.2 Micro Flexible Rolling; 1.3.1.3 Micro Ultrathin Strip Rolling; 1.3.2 Micro Deep Drawing; 1.3.3 Micro Hydromechanical Deep Drawing; 1.3.4 Micro Bending; 1.3.5 Micro Compression; 1.3.6 Other Microforming Methods; References; 2 Size Effects in Microforming; 2.1 Categories of Size Effects 327 $a2.2 Problems Caused by Size Effects2.2.1 Size Effects on Mechanical Behavior; 2.2.2 Size Effects on Tribology; 2.2.3 Size Effects on Scatter of Material Behavior; 2.3 Strategies for Control of Size Effects; 2.3.1 Microforming at Elevated Temperatures; 2.3.1.1 Warm Forming; 2.3.1.2 Characteristics of Microforming at Elevated Temperatures; 2.3.1.3 Heating Methods in Microforming; 2.3.2 Microstructural Refinement; References; II. Theory of Microforming; 3 Scaling Laws; 3.1 Introduction; 3.2 Scaling in Geometry; 3.2.1 Scaling of Length and Area in Two-Dimensional Geometry 327 $a3.2.2 Scaling of Surface Area and Volume in Three-Dimensional Geometry3.3 Scaling in Dynamics; 3.3.1 Scaling in Dynamic Force; 3.3.2 Scaling in Work and Power; 3.3.3 Scaling in Energy; 3.4 Scaling in Mechanics; 3.4.1 Scaling in Bending Moment; 3.4.2 Scaling in Deflection and Stiffness; 3.5 Scaling in Hydrodynamics; 3.6 Scaling in Heat Transfer; 3.6.1 Scaling in Heat Conduction; 3.6.2 Scaling in Heat Convection; 3.6.3 Scaling in Heat Radiation; 3.7 Scaling in Electromagnetic and Electrostatic Forces; 3.7.1 Scaling in Electromagnetic Force; 3.7.2 Scaling in Electrostatic Force 327 $a3.8 Scaling in Electricity4 Strain Gradient Plasticity Theory; 4.1 Introduction; 4.2 Couple Stress Theory; 4.3 Phenomenological Strain Gradient Plasticity Theory; 4.4 Mechanism-Based Strain Gradient Plasticity Theory; 4.5 Conventional Theory of Mechanism-Based Strain Gradient Plasticity; References; 5 Crystal Plasticity Theory; 5.1 Introduction; 5.2 Crystal Plasticity Theory; 5.2.1 Geometrics and Kinematics of Crystal Plastic Deformation; 5.2.2 Rate Independent Crystal Plasticity Constitutive Equation; 5.2.3 Rate Dependent Crystal Plasticity Constitutive Equation 327 $a5.3 Simplification of Rate Dependent Crystal Plasticity Theory5.3.1 Decomposition of the Crystal Plastic Deformation Gradient; 5.3.2 Elastic Constitutive Equation; 5.3.3 Flow Rule of Plastic Deformation; 5.3.4 Equation of Kinematics; 5.3.5 Hardening Law; 5.3.6 Models of Polycrystal Homogenization; 5.3.6.1 Taylor Averaging Procedure; 5.3.6.2 Finite Element Averaging Procedure; 5.4 Numerical Integration of Rate Dependent Crystal Plasticity Theory; 5.4.1 Total Lagrangian Formulation; 5.4.2 Fully Implicit Integration Procedure; 5.5 Calculation of Grain Orientation 330 $aMicroforming Technology: Theory, Simulation and Practice addresses all aspects of micromanufacturing technology, presenting detailed technical information and the latest research developments. The book covers fundamentals, theory, simulation models, equipment and tools design, practical micromanufacturing procedures, and micromanufacturing-related supporting systems, such as laser heating system, hydraulic system and quality evaluation systems. Newly developed technology, including micro wedge rolling, micro flexible rolling and micro hydromechanical deep drawing, as well as traditional methods, such as micro deep drawing, micro bending and micro ultrathin strip rolling, are discussed. This will be a highly valuable resource for those involved in the use, study and design of micro products and micromanufacturing technologies, including engineers, scientists, academics and graduate students. Provides an accessible introduction to the fundamental theories of microforming, size effects, and scaling laws Includes explanations of the procedures, equipment, and tools for all common microforming technologies Explains the numerical modeling procedures for 7 different types of microforming 606 $aMicroforms 606 $aMicroforms$vCongresses 615 0$aMicroforms. 615 0$aMicroforms 676 $a686.43 700 $aJiang$b Zhengyi$0984241 702 $aZhao$b Jingwei 702 $aXie$b Haibo 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583303503321 996 $aMicroforming technology$92247937 997 $aUNINA