LEADER 03826nam 2200517 450 001 9910583052003321 005 20180731043947.0 010 $a0-12-407737-4 035 $a(CKB)3710000000538145 035 $a(EBL)4202585 035 $a(MiAaPQ)EBC4202585 035 $a(PPN)19366402X 035 $a(EXLCZ)993710000000538145 100 $a20160115h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMultiphysics modeling $enumerical methods and engineering applications /$fQun Zhang, Song Cen 210 1$aLondon, England :$cAcademic Press,$d2016. 210 4$dİ2016 215 $a1 online resource (438 p.) 225 0 $aTsinghua University Press Computational Mechanics Series 300 $a"Produced in collaboration with Tsinghua University Press Limited"--Cover. 311 $a0-12-407709-9 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Contents; Preface; Acknowledgments; 1 - The physics models; 1.1 - Heat flow fundamentals; 1.1.1 - Basic equations; 1.1.2 - Boundary conditions; 1.1.3 - Weak forms of the thermal equation; 1.1.4 - The shape functions for FEM; 1.1.5 - Formulations in matrix form; 1.1.6 - The nonlinearity in thermal analysis; 1.1.6.1 - Material properties; 1.1.6.2 - Convection term from computational fluid dynamics (CFD) coupling; 1.1.7 - Stabilization method for convection-dominant transport equations; 1.1.8 - Penalty-based thermal contact 327 $a1.1.8.1 - The matrix equation for thermal contact1.2 - Fluid dynamics; 1.2.1 - Basic equations for fluid flow; 1.2.2 - Boundary and initial conditions for fluid flow; 1.2.3 - The constitutive equation for fluid flow; 1.2.4 - The weak forms; 1.2.4.1 - Galerkin formulation for N-S equations; 1.2.4.1.1 - The shape functions; 1.2.5 - Finite element equations; 1.2.6 - The nonlinearity and numerical challenging in CFD; 1.2.7 - The stabilization methods; 1.2.7.1 - SUPG and PSPG methods; 1.2.7.2 - Discontinuity capturing operator (Tezduyard, 2012) 327 $a1.2.7.3 - Underrelaxation method and solution capping1.2.8 - Turbulence model in CFD; 1.2.8.1 - k-Epsilon turbulence model; 1.2.8.1.1 - Basic equations for the k-epsilon model; 1.2.8.1.2 - Equations in weak form; 1.2.8.1.3 - Boundary conditions; 1.2.8.1.4 - Equations in matrix form; 1.2.8.2 - Wilcox k-omega turbulence model; 1.2.8.2.1 - Basic equations for k-omega model; 1.2.8.2.2 - Boundary conditions; 1.2.8.2.3 - Weak forms of k-omega model; 1.2.8.2.4 - Equations in matrix form; 1.2.8.3 - Procedure for solving the k-epsilon/k-omega turbulence model; 1.2.8.4 - Large eddy simulation 327 $a1.2.9 - The general transport equations1.2.9.1 - The governing equation of the transport equation; 1.2.9.2 - The weak form of advection diffusion equation; 1.2.9.3 - The SUPG stabilization for the advection-dominated advection-diffusion equation; 1.2.9.3.1 - Central differencing approach; 1.2.9.3.2 - Upwind method for convection-dominant transport equations (first-order accuracy); 1.2.9.4 - Discontinuity capturing operator for the advection-diffusion equation; 1.3 - Structural mechanics; 1.3.1 - Governing equations for structure analysis; 1.3.2 - The equation in matrix form 327 $a1.3.5.1 - Basic equations for thin shell structure 606 $aPhysics$xData processing 606 $aPhysics$xMathematical models 615 0$aPhysics$xData processing. 615 0$aPhysics$xMathematical models. 676 $a530.0285 700 $aZhang$b Qun$0951575 702 $aCen$b Song 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583052003321 996 $aMultiphysics modeling$92165612 997 $aUNINA