LEADER 01491nam 2200445 450 001 9910583009503321 005 20171121120120.0 010 $a0-12-811113-5 010 $a0-12-811112-7 035 $a(CKB)3710000001501495 035 $a(MiAaPQ)EBC4941359 035 $a(PPN)234297107 035 $a(EXLCZ)993710000001501495 100 $a20190215d2017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOne-dimensional nanostructures for PEM fuel cell applications /$fShangfeng Du, Christopher Koenigsmann, Shuhui Sun ; series editor Bruno G. Pollet 210 1$aLondon, England :$cAcademic Press,$d2017. 215 $a1 online resource (xii, 83 pages) $cillustrations 225 0 $aHydrogen and fuel cells primers 320 $aIncludes bibliographical references and index. 606 $aNanostructured materials 606 $aProton exchange membrane fuel cells$xMaterials 615 0$aNanostructured materials. 615 0$aProton exchange membrane fuel cells$xMaterials. 676 $a620.115 700 $aDu$b Shangfeng$0984239 702 $aKoenigsmann$b Christopher 702 $aSun$b Shuhui 702 $aPollet$b Bruno G. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910583009503321 996 $aOne-dimensional nanostructures for PEM fuel cell applications$92247934 997 $aUNINA LEADER 02550nam0 22005533i 450 001 VAN00292214 005 20250908012217.623 017 70$2N$a9780817645854 100 $a20250430r19942007 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aNotions of Convexity$fLars Hörmander 210 $aBoston [etc.]$cBirkhäuser$d1994 [stampa 2007] 215 $aviii, 414 p.$d24 cm 410 1$1001VAN00081056$12001 $aModern Birkhäuser classics$1210 $aBoston [etc.]$cBirkhäuser$d1980-2018. 606 $a26A51$xConvexity of real functions in one variable, generalizations [MSC 2020]$3VANC028644$2MF 606 $a26B25$xConvexity of real functions of several variables, generalizations [MSC 2020]$3VANC022447$2MF 606 $a31-XX$xPotential theory [MSC 2020]$3VANC019781$2MF 606 $a31B05$xHarmonic, subharmonic, superharmonic functions in higher dimensions [MSC 2020]$3VANC022312$2MF 606 $a31C10$xPluriharmonic and plurisubharmonic functions [MSC 2020]$3VANC028781$2MF 606 $a32-XX$xSeveral complex variables and analytic spaces [MSC 2020]$3VANC024999$2MF 606 $a32Txx$xPseudoconvex domains [MSC 2020]$3VANC022789$2MF 606 $a32U05$xPlurisubharmonic functions and generalizations [MSC 2020]$3VANC023504$2MF 606 $a32W05$x$\overline\partial$ and $\overline\partial$-Neumann operators [MSC 2020]$3VANC023494$2MF 610 $aCalculus$9KW:K 610 $aComplex Analysis$9KW:K 610 $aConvexity$9KW:K 610 $aDifferential equations$9KW:K 610 $aDifferential operators$9KW:K 610 $aFunctional Analysis$9KW:K 610 $aMathematics$9KW:K 610 $aMicrolocal Analysis$9KW:K 610 $aPartial Differential Equations$9KW:K 610 $aPseudoconvexity$9KW:K 620 $dBoston$3VANL000051 700 1$aHörmander$bLars$3VANV046028$031879 712 $aBirkhäuser $3VANV108193$4650 801 $aIT$bSOL$c20250912$gRICA 856 4 $uhttps://doi.org/10.1007/978-0-8176-4585-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00292214 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 11519 $e08eMF11519 20250625 996 $aNotions of convexity$9375186 997 $aUNICAMPANIA