LEADER 05050nam 2201165z- 450 001 9910576886203321 005 20231214133054.0 035 $a(CKB)5720000000008312 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/84433 035 $a(EXLCZ)995720000000008312 100 $a20202206d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMechanisms of ER Protein Import 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (258 p.) 311 $a3-0365-4094-6 311 $a3-0365-4093-8 330 $aProtein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of approximately 10,000 different soluble and membrane proteins of human cells, which amounts to about 30% of the proteome. Most of these proteins fulfill their functions either in the membrane or lumen of the ER plus the nuclear envelope, in one of the organelles of the pathways for endo- and exocytosis (ERGIC, Golgi apparatus, endosome, lysosome, and trafficking vesicles), or at the cell surface as plasma membrane or secreted proteins. An increasing number of membrane proteins destined to lipid droplets, peroxisomes or mitochondria are first targeted to and inserted into the ER membrane prior to their integration into budding lipid droplets or peroxisomes or prior to their delivery to mitochondria via the ER-SURF pathway. ER protein import involves two stages, ER targeting, which guarantees membrane specificity, and the insertion of nascent membrane proteins into or translocation of soluble precursor polypeptides across the ER membrane. In most cases, both processes depend on amino-terminal signal peptides or transmembrane helices, which serve as signal peptide equivalents. However, the targeting reaction can also involve the ER targeting of specific mRNAs or ribosome?nascent chain complexes. Both processes may occur co- or post-translationally and are facilitated by various sophisticated machineries, which reside in the cytosol and the ER membrane, respectively. Except for resident ER and mitochondrial membrane proteins, the mature proteins are delivered to their functional locations by vesicular transport. 606 $aResearch & information: general$2bicssc 606 $aBiology, life sciences$2bicssc 610 $achaperones 610 $acontact sites 610 $aendoplasmic reticulum 610 $aER-SURF 610 $amembrane extraction 610 $amitochondria 610 $aprotein targeting 610 $abimolecular luminescence complementation 610 $acompetition 610 $asplit luciferase 610 $amembrane proteins 610 $aprotein-protein interactions 610 $aSec61 complex 610 $aSec63 610 $asynthetic peptide complementation 610 $aTRAP complex 610 $aER protein translocase 610 $asignal peptide 610 $aprotein translocation 610 $anascent peptide chain 610 $amembrane insertion 610 $amolecular modelling 610 $amolecular dynamics simulations 610 $amolecular docking 610 $asignal peptidase 610 $aER translocon 610 $asignal recognition particle dependent protein targeting 610 $aSec61 dependent translocation 610 $aco-translational translocation 610 $ainhibitor 610 $ahigh throughput screening 610 $aSec61 610 $aSec62 610 $afolding 610 $ainsertion 610 $amembrane protein 610 $atranslocon 610 $aribosome 610 $atransmembrane segment 610 $alipid droplets 610 $aperoxisomes 610 $aPEX3 610 $amembrane protein insertion 610 $alabel-free quantitative mass spectrometry 610 $adifferential protein abundance analysis 610 $aZellweger syndrome 610 $aGET 610 $aprotein transport 610 $aSND 610 $aSRP 610 $aEMC 610 $apositive-inside rule 610 $ahydrophobicity 610 $atransmembrane helix 610 $asignal recognition particle 610 $anascent polypeptide-associated complex 610 $afidelity 610 $acyclotriazadisulfonamide 610 $aER quality control 610 $aDNAJC3 610 $apreprotein 610 $aSec61 translocon 610 $aribosome stalling 610 $asignal sequence 610 $aSec61 translocase 610 $aNAC 615 7$aResearch & information: general 615 7$aBiology, life sciences 700 $aZimmermann$b Richard$4edt$01106845 702 $aLang$b Sven$4edt 702 $aZimmermann$b Richard$4oth 702 $aLang$b Sven$4oth 906 $aBOOK 912 $a9910576886203321 996 $aMechanisms of ER Protein Import$93024210 997 $aUNINA