LEADER 01757nam 2200457z- 450 001 9910576868503321 005 20220621 010 $a1000143200 035 $a(CKB)5860000000051233 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/84371 035 $a(oapen)doab84371 035 $a(EXLCZ)995860000000051233 100 $a20202206d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aStochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models 210 $aKarlsruhe$cKIT Scientific Publishing$d2022 215 $a1 online resource (192 p.) 225 1 $aKarlsruher Schriftenreihe Fahrzeugsystemtechnik 311 08$a3-7315-1166-5 330 $aThis work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts. 606 $aMechanical engineering & materials$2bicssc 610 $aAlgorithmen 610 $aAlgorithms 610 $aE-Mobility 610 $aElektromobilita?t 610 $aEnergiemanagement 610 $aEnergy Management 610 $aFahrzeugtechnik 610 $aForecasting 610 $aVehicle Technology 610 $aVorhersagen 615 7$aMechanical engineering & materials 700 $aScheubner$b Stefan$4auth$01331144 906 $aBOOK 912 $a9910576868503321 996 $aStochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models$93040263 997 $aUNINA