LEADER 03254nam 22006135 450 001 9910574857703321 005 20251113174115.0 010 $a9783031044281$b(electronic bk.) 010 $z9783031044274 024 7 $a10.1007/978-3-031-04428-1 035 $a(MiAaPQ)EBC7015335 035 $a(Au-PeEL)EBL7015335 035 $a(CKB)23689196500041 035 $aEBL7015335 035 $a(AU-PeEL)EBL7015335 035 $a(PPN)263894118 035 $a(OCoLC)1329437596 035 $a(DE-He213)978-3-031-04428-1 035 $a(EXLCZ)9923689196500041 100 $a20220611d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aReal Homotopy of Configuration Spaces $ePeccot Lecture, Collège de France, March & May 2020 /$fby Najib Idrissi 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (201 pages) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2303 300 $aDescription based upon print version of record. 311 08$aPrint version: Idrissi, Najib Real Homotopy of Configuration Spaces Cham : Springer International Publishing AG,c2022 9783031044274 330 $aThis volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory?s most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2303 606 $aAlgebraic topology 606 $aAlgebra, Homological 606 $aManifolds (Mathematics) 606 $aAlgebraic Topology 606 $aCategory Theory, Homological Algebra 606 $aManifolds and Cell Complexes 615 0$aAlgebraic topology. 615 0$aAlgebra, Homological. 615 0$aManifolds (Mathematics) 615 14$aAlgebraic Topology. 615 24$aCategory Theory, Homological Algebra. 615 24$aManifolds and Cell Complexes. 676 $a514.2 700 $aIdrissi$b Najib$01241742 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910574857703321 996 $aReal Homotopy of Configuration Spaces$92880469 997 $aUNINA