LEADER 03982nam 22006015 450 001 9910568243503321 005 20241028132658.0 010 $a9781447175209$bebook 010 $a9781447175193$bpaperback 010 $a9781447175193 024 7 $a10.1007/978-1-4471-7520-9 035 $a(MiAaPQ)EBC6963443 035 $a(Au-PeEL)EBL6963443 035 $a(CKB)21672593400041 035 $a(DE-He213)978-1-4471-7520-9 035 $a(PPN)262168197 035 $a(EXLCZ)9921672593400041 100 $a20220426d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematics for Computer Graphics /$fby John Vince 205 $a6th ed. 2022. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d2022. 215 $a1 online resource 225 1 $aUndergraduate Topics in Computer Science,$x2197-1781 311 08$aPrint version: Vince, John Mathematics for Computer Graphics London : Springer London, Limited,c2022 9781447175193 327 $aPreface -- Introduction -- Numbers -- Algebra -- Trigonometry -- Coordinate Systems -- Determinants -- Vectors -- Matrix Algebra -- Complex Numbers -- Geometric Transforms -- Quaternion Algebra -- Quaternions in Space -- Interpolation -- Curves and Patches -- Analytic Geometry -- Barycentric Coordinates -- Geometric Algebra -- Calculus: Derivatives -- Calculus: Integration -- Worked Examples -- Appendix A -- Appendix B -- Index. 330 $aJohn Vince explains a comprehensive range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, special effects, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded sixth edition. The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on determinants, vectors, matrix algebra, complex numbers, geometric transforms, quaternion algebra, quaternions in space, interpolation, curves and patches, analytical geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new subject of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there is a chapter on worked examples. Mathematics for Computer Graphics covers all of the key areas of the subject, including: Number sets Algebra Trigonometry Complex numbers Coordinate systems Determinants Vectors Quaternions Matrix algebra Geometric transforms Interpolation Curves and surfaces Analytic geometry Barycentric coordinates Geometric algebra Differential calculus Integral calculus This sixth edition contains approximately 150 worked examples and over 330 colour illustrations, which are central to the author?s descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics software and setting the scene for further reading of more advanced books and technical research papers. 410 0$aUndergraduate Topics in Computer Science,$x2197-1781 606 $aComputer graphics 606 $aComputer science$xMathematics 606 $aComputer Graphics 606 $aMathematical Applications in Computer Science 606 $aInfografia$2thub 606 $aMatemātica aplicada$2thub 608 $aLlibres electrōnics$2thub 615 0$aComputer graphics. 615 0$aComputer science$xMathematics. 615 14$aComputer Graphics. 615 24$aMathematical Applications in Computer Science. 615 7$aInfografia 615 7$aMatemātica aplicada 676 $a006.6869 700 $aVince$b John$g(John A.),$0471760 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910568243503321 996 $aMathematics for computer graphics$92965402 997 $aUNINA