LEADER 02704nam 2200541 450 001 9910830681403321 005 20180302083955.0 010 $a1-118-92923-3 010 $a1-118-92921-7 035 $a(CKB)4330000000007552 035 $a(MiAaPQ)EBC4731595 035 $a(PPN)203865391 035 $a(EXLCZ)994330000000007552 100 $a20161109h20172017 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aIonospheric space weather $elongitude and hemispheric dependences and lower atmosphere forcing /$fTimothy Fuller-Rowell [and three others], editors 210 1$aHoboken, New Jersey :$cWiley,$d[2017] 210 4$dİ2017 215 $a1 online resource (314 pages) $ccolor illustrations, maps 225 1 $aGeophysical monograph ;$v220 300 $a"This work is a copublication between the American Geophysical Union and John Wiley and Sons, Inc." 311 $a1-118-92922-5 311 $a1-118-92920-9 320 $aIncludes bibliographical references and index. 330 $a"'Ionospheric Space Weather' includes articles from six science themes that were discussed at the Chapman Conference in 2012. These include: Hemispherical dependence of magnetospheric energy injection and the thermosphere-ionosphere response, longitude and hemispheric dependence of storm-enhanced densities (SED), response of the thermosphere and ionosphere to variability in solar radiation, longitude spatial structure in total electron content and electrodynamics, temporal response to lower-atmosphere disturbances, and ionospheric irregularities and scintillation. 'Ionospheric Space Weather: Longitude Dependence and Lower Atmosphere Forcing' will be useful to both active researchers and advanced graduate students in the field of physics, geophysics, and engineering, especially those who are keen to acquire a global understanding of ionospheric phenomena, including observational information from all longitude sectors across the globe"--Provided by publisher. 410 0$aGeophysical monograph ;$v220. 606 $aIonospheric forecasting 606 $aSpace environment 606 $aLongitude 606 $aBoundary layer (Meteorology) 615 0$aIonospheric forecasting. 615 0$aSpace environment. 615 0$aLongitude. 615 0$aBoundary layer (Meteorology) 676 $a551.5145 702 $aFuller-Rowell$b Timothy 712 02$aAmerican Geophysical Union, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830681403321 996 $aIonospheric space weather$93929137 997 $aUNINA LEADER 04641nam 2201081z- 450 001 9910566473203321 005 20220506 010 $a9783036539072 035 $a(CKB)5680000000037648 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/81044 035 $a(oapen)doab81044 035 $a(EXLCZ)995680000000037648 100 $a20202205d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAntimicrobial Resistance and Virulence - 2nd Volume 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 210 1$aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 online resource (156 p.) 311 1 $a9783036539089 311 1 $a3036539085 311 1 $a9783036539072 311 1 $a3036539077 330 $aThe worldwide dissemination of antimicrobial-resistant bacteria, particularly those resistant to last-resource antibiotics, is a common problem to which no immediate solution is foreseen. In 2017, the World Health Organization (WHO) published a list of antimicrobial-resistant "priority pathogens", which include a group of microorganisms with high-level resistance to multiple drugs, named ESKAPE pathogens, comprising vancomycin-resistant Enterococcus faecium (VRE), methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA), extended spectrum ?-lactamase (ESBL) or carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa and extended spectrum ?-lactamase (ESBL) or carbapenem-resistant Enterobacter spp. These bacteria also have the ability to produce several virulence factors, which have a major influence on the outcomes of infectious diseases. Bacterial resistance and virulence are interrelated, since antibiotics pressure may influence bacterial virulence gene expression and, consequently, infection pathogenesis. Additionally, some virulence factors contribute to an increased resistance ability, as observed in biofilm-producing strains. The surveillance of important resistant and virulent clones and associated mobile genetic elements is essential to decision making in terms of mitigation measures to be applied for the prevention of such infections in both human and veterinary medicine, being also relevant to address the role of natural environments as important components of the dissemination cycle of these strains. 606 $aBiology, life sciences$2bicssc 606 $aMicrobiology (non-medical)$2bicssc 606 $aResearch & information: general$2bicssc 610 $aAcinetobacter baumannii 610 $aadaptation 610 $aAeromonas 610 $aaminoglycoside 610 $aantibiotic resistance 610 $aantimicrobial resistance 610 $abacteremia 610 $abiocide 610 $abiofilm 610 $abiofilm formation 610 $acamel 610 $acarbapenem resistance 610 $aclimate change 610 $aCMY-2 610 $across-resistance 610 $aCTX-M-1 610 $aCTX-M-14 610 $aCTX-M-15 610 $aCTX-M-32 610 $aCTX-M-55 610 $adiabetic foot infections 610 $adogs 610 $adomestic 610 $adrug resistance 610 $aESBL 610 $aEscherichia coli 610 $aextended-spectrum ?-lactamases 610 $agenes 610 $agenomic epidemiology 610 $aGram-negative bacteria 610 $ainfant 610 $ainternational high-risk clones 610 $aKPC-2 610 $amastitis 610 $amicrobial 610 $amicrocosm 610 $amilk 610 $amortality 610 $anewborn 610 $apH 610 $aplasmid 610 $aPseudomonas aeruginosa 610 $apyruvate cycle 610 $aqAmpC 610 $astaphylococci 610 $aStaphylococcus aureus 610 $asubinhibitory concentrations 610 $atemperature 610 $avirulence 610 $avirulence factors 610 $avirulence genes 610 $avirulence-related genes 610 $awater 610 $awhole-genome sequencing 615 7$aBiology, life sciences 615 7$aMicrobiology (non-medical) 615 7$aResearch & information: general 702 $aSilva$b Elisabete A. 702 $aOliveira$b Manuela 906 $aBOOK 912 $a9910566473203321 996 $aAntimicrobial Resistance and Virulence$94319432 997 $aUNINA