LEADER 05015nam 2201141z- 450 001 9910566467103321 005 20231214133358.0 035 $a(CKB)5680000000037709 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/81162 035 $a(EXLCZ)995680000000037709 100 $a20202205d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptical Gas Sensing: Media, Mechanisms and Applications 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (234 p.) 311 $a3-0365-3479-2 311 $a3-0365-3480-6 330 $aOptical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL?Quantum Cascade Lasers, ICL?Interband Cascade Lasers, OPO?Optical Parametric Oscillator, DFG?Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques. 517 $aOptical Gas Sensing 606 $aTechnology: general issues$2bicssc 606 $aHistory of engineering & technology$2bicssc 610 $alaser flow meter 610 $aPitot tube 610 $aflow speed 610 $atime of flight 610 $adilution method 610 $aflow simulation 610 $aflow turbulence 610 $agas sensing applications 610 $aMEMS 610 $agas sensor 610 $aphotoacoustics 610 $acantilever 610 $acapacitive detection 610 $aanalytic model 610 $ainfrared imaging 610 $amultispectral and hyperspectral imaging 610 $aair pollution monitoring 610 $aremote sensing and sensors 610 $aspectroscopy 610 $afourier transform 610 $aimage processing 610 $alaser gas analyzer 610 $aflux measurement 610 $aeddy covariance method 610 $aderivative absorption spectroscopy 610 $agas sensors 610 $aantiresonant hollow core fibers 610 $alaser spectroscopy 610 $awavelength modulation spectroscopy 610 $atunable diode laser absorption spectroscopy 610 $aphotothermal spectroscopy 610 $aphotoacoustic spectroscopy 610 $afiber gas sensors 610 $amid-infrared 610 $aquantum cascade detector 610 $ahigh-speed operation 610 $aheterodyne detection 610 $ahigh-resolution spectroscopy 610 $aisotopic ratio 610 $afrequency comb 610 $aVernier spectroscopy 610 $arefractometry 610 $apressure 610 $ashort-term performance 610 $aFabry?Perot cavity 610 $agas modulation 610 $amodulation techniques 610 $ametrology 610 $aintegrated sensors 610 $awaveguides 610 $aabsorption spectroscopy 610 $aRaman spectroscopy 610 $agas sensing 610 $afemtosecond laser micromachining 610 $amicrochannel fabrication 610 $amicrostructured fibers 610 $aphotoacoustic 610 $apressure transducer 610 $awafer-level 610 $aCO2 610 $acombined NIR/MIR laser absorption 610 $alaser multiplexing in a mid-IR single-mode fiber 610 $asimultaneous multispecies (CO, CO2, H2O) in situ measurements 615 7$aTechnology: general issues 615 7$aHistory of engineering & technology 700 $aAbramski$b Krzysztof M$4edt$01319553 702 $aJaworski$b Piotr$4edt 702 $aAbramski$b Krzysztof M$4oth 702 $aJaworski$b Piotr$4oth 906 $aBOOK 912 $a9910566467103321 996 $aOptical Gas Sensing: Media, Mechanisms and Applications$93033958 997 $aUNINA