LEADER 03569nam 22006735 450 001 9910558491203321 005 20251113182625.0 010 $a3-030-94793-9 024 7 $a10.1007/978-3-030-94793-4 035 $a(MiAaPQ)EBC6944954 035 $a(Au-PeEL)EBL6944954 035 $a(CKB)21459958100041 035 $a(PPN)262171082 035 $a(OCoLC)1309132296 035 $a(DE-He213)978-3-030-94793-4 035 $a(EXLCZ)9921459958100041 100 $a20220401d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematics of Open Fluid Systems /$fby Eduard Feireisl, Antonin Novotný 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2022. 215 $a1 online resource (299 pages) 225 1 $aNe?as Center Series,$x2523-3351 311 08$aPrint version: Feireisl, Eduard Mathematics of Open Fluid Systems Cham : Springer International Publishing AG,c2022 9783030947927 320 $aIncludes bibliographical references (pages 270-282) and index. 327 $aPart I: Modelling -- Mathematical Models of Fluids in Continuum Mechanics -- Open vs. Closed Systems -- Part II: Analysis -- Generalized Solutions -- Constitutive Theory and Weak-Strong Uniqueness Revisited.-Existence Theory, Basic Approximation Scheme -- Vanishing Galerkin Limit and Domain Approximation.-Vanishing Artificial Diffusion Limit -- Vanishing Artificial Pressure Limit -- Existence Theory - Main Results.-Part III: Qualitative Properties -- Long Time Behavior -- Statistical Solutions, Ergodic Hypothesis, and Turbulence -- Systems with Prescribed Boundary Temperature. 330 $aThe goal of this monograph is to develop a mathematical theory of open fluid systems in the framework of continuum thermodynamics. Part I discusses the difference between open and closed fluid systems and introduces the Navier-Stokes-Fourier system as the mathematical model of a fluid in motion that will be used throughout the text. A class of generalized solutions to the Navier-Stokes-Fourier system is considered in Part II in order to show existence of global-in-time solutions for any finite energy initial data, as well as to establish the weak-strong uniqueness principle. Finally, Part III addresses questions of asymptotic compactness and global boundedness of trajectories and briefly considers the statistical theory of turbulence and the validity of the ergodic hypothesis. 410 0$aNe?as Center Series,$x2523-3351 606 $aFunctional analysis 606 $aDifferential equations 606 $aMathematical models 606 $aContinuum mechanics 606 $aFunctional Analysis 606 $aDifferential Equations 606 $aMathematical Modeling and Industrial Mathematics 606 $aContinuum Mechanics 615 0$aFunctional analysis. 615 0$aDifferential equations. 615 0$aMathematical models. 615 0$aContinuum mechanics. 615 14$aFunctional Analysis. 615 24$aDifferential Equations. 615 24$aMathematical Modeling and Industrial Mathematics. 615 24$aContinuum Mechanics. 676 $a620.106 676 $a532.05015118 700 $aFeireisl$b Eduard$0472389 702 $aNovotny?$b A. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910558491203321 996 $aMathematics of open fluid systems$92979498 997 $aUNINA