LEADER 04665nam 2201081z- 450 001 9910557772303321 005 20231214133314.0 035 $a(CKB)5400000000045637 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68312 035 $a(EXLCZ)995400000000045637 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRemote Sensing by Satellite Gravimetry 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (286 p.) 311 $a3-0365-0008-1 311 $a3-0365-0009-X 330 $aOver the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system. 606 $aResearch & information: general$2bicssc 610 $aterrestrial water storage (TWS) 610 $aGRACE 610 $aGLDAS 610 $aTRMM 610 $adrought 610 $aENSO 610 $aNAO 610 $aTurkey 610 $aMass balance 610 $aIce Sheets 610 $aSea-level Rise 610 $aAntarctica 610 $aCryoSat-2 610 $aGRACE-Follow On 610 $aGRACE-FO 610 $adownward continuation 610 $aspectral methods 610 $agravity field recovery 610 $aGRACE Follow-On 610 $aorbit configuration 610 $asynergistic observation 610 $amass transport in the Earth system 610 $aGRACE and GRACE follow-on mission 610 $acurrent and future observation concepts and instruments 610 $aGRACE TWSA 610 $agroundwater level anomaly 610 $adownscaling 610 $amachine learning 610 $aboosted regression trees 610 $aglacial sediment 610 $aice mass 610 $asatellite gravimetry 610 $aPatagonia 610 $aice mass change 610 $aSLR 610 $aswarm 610 $anormal equation combination 610 $acoseismic gravity gradient changes 610 $agravity field model 610 $aGOCE 610 $aEarth?s gravity field 610 $akinematic orbit 610 $akinematic baseline 610 $atime-variable gravity 610 $ageocenter 610 $areference frames 610 $aself-attraction and loading 610 $aLevel-2 processing 610 $atime-variable gravity field 610 $amass change monitoring 610 $anext-generation gravity mission 610 $atemporal gravity field 610 $anumerical closed-loop simulation 610 $asatellite mission constellations 610 $amass transport 610 $agravity field satellite missions 610 $aGOCE High-Level Processing Facility (HPF), earth gravity field 610 $ageoid 610 $aspectral enhancement method (SEM), GPS/leveling 615 7$aResearch & information: general 700 $aGruber$b Thomas$4edt$01309874 702 $aEicker$b Annette$4edt 702 $aFlechtner$b Frank$4edt 702 $aGruber$b Thomas$4oth 702 $aEicker$b Annette$4oth 702 $aFlechtner$b Frank$4oth 906 $aBOOK 912 $a9910557772303321 996 $aRemote Sensing by Satellite Gravimetry$93029688 997 $aUNINA