LEADER 10011nam 2202821z- 450 001 9910557768803321 005 20210501 035 $a(CKB)5400000000045673 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/69003 035 $a(oapen)doab69003 035 $a(EXLCZ)995400000000045673 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvances in Rotating Electric Machines$eVolume 2 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (398 p.) 311 08$a3-03936-840-0 311 08$a3-03936-841-9 330 $aIt is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines. 517 $aAdvances in Rotating Electric Machines 606 $aHistory of engineering and technology$2bicssc 610 $aacoustics 610 $aactive flux 610 $aadaptive algorithm 610 $aadaptive robust control 610 $aAFPMSM 610 $aanalytical algorithm 610 $aanalytical modeling 610 $aauto tuning 610 $aautomation 610 $aautonomous systems 610 $aback electromotive force 610 $aBLDC 610 $aBLDC motor 610 $aBLDCM 610 $aboundary element method 610 $abrushless 610 $abrushless DC motor 610 $abrushless direct current motor with permanent magnet (BLDCM) 610 $abrushless synchronous generator 610 $acage winding constructions 610 $acharacteristics analysis 610 $aCMV 610 $acogging torque 610 $acommutation torque ripple 610 $acore saturation 610 $acoupled electromagnetic-thermal model 610 $across-coupling inductance 610 $acurrent spectrum decomposition 610 $adeadbeat current control 610 $adeep-bar effect 610 $adetection 610 $adiagnosis 610 $adirect start-up 610 $adirect torque control 610 $adirect torque control (DTC) 610 $aDOE 610 $adouble Fourier analysis 610 $adouble-cage induction motor 610 $adrives 610 $aDTC with space-vector modulation (DTC-SVM) 610 $adual-channel 610 $adual-channel operation (DCO) 610 $aduty cycle 610 $aduty cycle control 610 $aeco-friendly 610 $aeddy current loss 610 $aefficiency 610 $aelectric drive 610 $aelectric machines 610 $aelectric power generation 610 $aelectric transmission line 610 $aelectric vehicle 610 $aelectrical and mechanical similarities 610 $aelectrical machines 610 $aelectrical motors 610 $aelectromagnetic model 610 $aelectromagnetic performance 610 $aenergy feedback 610 $aequivalent circuit 610 $aestimation 610 $aexperimental implementation 610 $afailure 610 $afault detection 610 $afault-detection 610 $afault-tolerance 610 $afault-tolerant control 610 $afault-tolerant system 610 $afield-oriented control 610 $afilling factor optimization 610 $afinite control set mode predictive control 610 $afinite control set model predictive control 610 $afinite element analysis 610 $afinite element method 610 $afiring angle modulation 610 $aflux intensifying 610 $aflux-weakening control 610 $aH_infinity 610 $aharmonic currents 610 $aharmonic modeling method 610 $ahigh frequency signal injection 610 $ahigh frequency square-wave voltage 610 $ahigh resistance connection 610 $ahigh speed generator 610 $ahigh-efficiency 610 $ahigh-frequency model 610 $ahigh-speed drives 610 $ahigh-speed permanent synchronous motor 610 $ahybrid electric vehicle 610 $ahybrid permanent magnet 610 $aimprovement of motor reliability 610 $ain-wheel direct-drive 610 $ainduction 610 $ainduction motor 610 $ainduction motor drives 610 $ainduction motors 610 $ainjection 610 $ainterior permanent magnet (IPM) machine 610 $ainterior permanent magnet synchronous motor (IPMSM) 610 $ainterior permanent-magnet synchronous motor (IPMSM) 610 $aIPMSM 610 $airon loss 610 $airreversible demagnetization 610 $akinematic structure 610 $aline-start synchronous reluctance motor 610 $amagnet-axis-shifted 610 $amagnetic field 610 $amagnetic field characteristic 610 $amagnetic polarity detection 610 $amagnetic wire 610 $amagnetic-geared machine 610 $amagneto-mechanics 610 $amathematical model 610 $amathematical modelling 610 $amaximum torque per ampere 610 $amaximum torque per ampere (MTPA) operation 610 $ametamodeling 610 $amodeling 610 $amodulation techniques 610 $amotor 610 $amotor drives 610 $amulti-channel 610 $amultiphase 610 $amultiphase electric drives 610 $amultiphase machines 610 $anoise 610 $aonline parameters estimation 610 $aoptimization 610 $aoptimization algorithm 610 $aouter rotor 610 $aouter rotor inductor 610 $aoverhang 610 $aovermodulation and six-step operation 610 $aparameter identification 610 $aparticle swarm optimization 610 $aperiodic controller 610 $apermanent magnet 610 $apermanent magnet brushless direct current motor 610 $apermanent magnet machine 610 $apermanent magnet machine design 610 $apermanent magnet synchronous machines 610 $apermanent magnet synchronous motor 610 $apermanent magnet synchronous motor (PMSM) 610 $apermanent-magnet vernier machine 610 $aphase-locked loop (PLL) 610 $aPMa-SynRM 610 $aPMSM 610 $aPMSM servo motor drives 610 $aposition sensorless 610 $apower factor 610 $apredictive current control 610 $apredictive torque control 610 $aPWM 610 $aquad-channel operation (QCO) 610 $arailway traction drives 610 $areaction sphere 610 $areluctance torque 610 $arotor fault 610 $arotor position 610 $arotor position estimation 610 $asensor misalignment 610 $aSensorless 610 $asensorless control 610 $asignal injection 610 $asingle-channel operation (SCO) 610 $asix-phase induction motor 610 $asix-phase machines 610 $asix-phase permanent magnet synchronous machines 610 $asizing methodology 610 $asmart-sensor 610 $asoft magnetic composite 610 $asot filling factor 610 $aspace harmonics 610 $aspherical motor 610 $astator fault 610 $astator flux observation 610 $astator structure 610 $astray flux 610 $astructural design 610 $asuper-twisting sliding mode observer (STO) 610 $asuper-twisting sliding-mode stator flux observer (STSMFO) 610 $asupport vector machines 610 $asurface permanent magnet synchronous motor 610 $aswitched reluctance motor 610 $aswitched reluctance motor (SRM) 610 $asynchronous reluctance machines 610 $aSynRM 610 $asystematic review 610 $atemperature field analysis 610 $athermal model 610 $atime harmonics 610 $atime-frequency transforms 610 $atorque density optimization 610 $atorque estimation 610 $atorque optimal distribution method 610 $atorque ripple 610 $atorque sharing functions 610 $atransmission shaft 610 $atriple-channel operation (TCO) 610 $auncertainty and disturbance estimator 610 $auneven magnets 610 $avector control 610 $avibration noise 610 $avibro-acoustics 610 $awavelet entropy 610 $awindings 610 $awound synchronous machines (WSM) 615 7$aHistory of engineering and technology 700 $aCruz$b Se?rgio$4edt$00 702 $aCruz$b Se?rgio$4oth 906 $aBOOK 912 $a9910557768803321 996 $aAdvances in Rotating Electric Machines$93029081 997 $aUNINA