LEADER 04552nam 2201045z- 450 001 9910557761003321 005 20240201153705.0 035 $a(CKB)5400000000045752 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68559 035 $a(EXLCZ)995400000000045752 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplications of SEM Automated Mineralogy$eFrom Ore Deposits over Processing to Secondary Resource Characterization 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (226 p.) 311 $a3-0365-0622-5 311 $a3-0365-0623-3 330 $aDuring the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the optimisation of comminution, flotation, mineral concentration and metallurgical processes in the mining industry by generating quantified data, is still the major application field of SEM automated mineralogy. However, there is interesting potential beyond these classical fields of geometallurgy and metal ore fingerprinting. Slags, pottery and artefacts can be studied in an archeological context for the recognition of provenance and trade pathways; soil, and solid particles of all kinds, are objects in forensic science. SEM automated mineralogy allows new insight in the fields of process chemistry and recycling technology. 517 $aApplications of SEM Automated Mineralogy 606 $aResearch & information: general$2bicssc 610 $aZr-REE-Nb deposits 610 $aalkaline rocks 610 $aautomated mineralogy 610 $aKhalzan Buregtei 610 $aautomated scanning electron microscopy 610 $aQEMSCAN® 610 $atrace minerals 610 $agold 610 $aREE minerals 610 $aREE carbonatite ore 610 $acomminution 610 $amulti-stage flotation 610 $aEDX spectra 610 $aMLA 610 $amineral processing 610 $airon ore 610 $aKiruna 610 $aRaman spectroscopy 610 $amagnetite 610 $ahematite 610 $ascanning electron microscopy (SEM) 610 $aautomated quantitative analysis (AQM) 610 $aspectrum quantification 610 $asignal deconvolution 610 $afault gouge 610 $a200-nm resolution 610 $agrain size distribution 610 $aIkkattup nunaa 610 $amineral maps 610 $asubmicrometer 610 $aautomated quantitative mineralogy (AQM) 610 $ascanning electron microscopy 610 $aZEISS Mineralogic 610 $aFiskenęsset complex 610 $aFeret angle 610 $aelement concentration map 610 $avisualization 610 $amineral association 610 $abulk composition 610 $agrain size 610 $awaste of electrical and electronic equipment 610 $aX-ray computed tomography 610 $amineral liberation analysis 610 $aindicator minerals 610 $aheavy mineral concentrates 610 $atill sampling 610 $aVMS 610 $aIzok Lake 610 $asewage sludge ashes (SSA) 610 $aphosphate 610 $arecycling 610 $arecovery 610 $aSEM-automated mineralogy 610 $amineral liberation analysis (MLA) 610 $ascanning electron microscope 610 $araw materials 610 $aresource technology 610 $agranular material 610 $apetrology 615 7$aResearch & information: general 700 $aSchulz$b Bernhard$4edt$01280959 702 $aSchulz$b Bernhard$4oth 906 $aBOOK 912 $a9910557761003321 996 $aApplications of SEM Automated Mineralogy$93017750 997 $aUNINA