LEADER 04945nam 2201381z- 450 001 9910557751503321 005 20220111 035 $a(CKB)5400000000045826 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/77066 035 $a(oapen)doab77066 035 $a(EXLCZ)995400000000045826 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aImaging Sensors and Applications 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (350 p.) 311 08$a3-0365-2604-8 311 08$a3-0365-2605-6 330 $aIn past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome. 606 $aTechnology: general issues$2bicssc 610 $a3D Fourier transform 610 $a3D measurement 610 $aabdominal ultrasound 610 $aaberration 610 $aacoustic emission 610 $aanalytical model 610 $aaround view monitoring system 610 $aautomatic camera calibration 610 $aback muscle stiffness 610 $aballoon catheter 610 $abandwidth expander 610 $abiomedical imaging 610 $abrain imaging 610 $abrain tumor classification 610 $acarfilzomib 610 $aclassification discrimination 610 $aclinical applications 610 $aconvex array transducer 610 $adeep learning 610 $adirectivity pattern 610 $adistortion 610 $adiverging wave imaging 610 $aelasticity 610 $aelastography 610 $aensemble learning 610 $afluorescence LiDAR 610 $afringe projection 610 $afull-directional imaging 610 $aguided wave (GW) 610 $ahigh-frequency ultrasound 610 $ahydrogel 610 $aimage guiding 610 $aIoT 610 $alaser-induced fluorescence 610 $amachine learning 610 $amacro-fiber composite (MFC) 610 $amedical diagnostic imaging 610 $aMQTT 610 $amultifocal point transducer 610 $an/a 610 $ananosilica 610 $anon-destructive testing (NDT) 610 $anonlinearity 610 $aophthalmic imaging 610 $aoptical coherence tomography 610 $aoptical lens 610 $aperipheral vasculature 610 $aphase measurement 610 $aphase unwrapping 610 $aphotoacoustic 610 $aphotoacoustic imaging 610 $aphotoacoustic microscopy 610 $aplane wave imaging 610 $apower amplifier 610 $aprostate cancer 610 $aquad-scanner scanning strategy 610 $aquantitative analysis 610 $areliability 610 $aremote control 610 $aremote operation 610 $aremote sharing economy 610 $aresearch equipment sharing 610 $ashear-wave elastography (SWE) 610 $askull bone 610 $asoft tissue 610 $aspine 610 $asuper-resolution 610 $asynthetic aperture 610 $asynthetic focusing 610 $atissue ultrasound palpation system (TUPS) 610 $atranscranial 610 $atransducer 610 $atransfer learning 610 $atransrectal probe 610 $atwo-photon laser scanning microscopy 610 $aultrasonic imaging 610 $aultrasound 610 $aultrasound imaging 610 $aultrasound transducer device 610 $avegetation monitoring 610 $aviscoelasticity 610 $avision-based advanced driver assistance systems 610 $awave patterns 610 $awhole-directional scanning 610 $aYoung's modulus 615 7$aTechnology: general issues 700 $aLee$b Changho$4edt$01297616 702 $aYoon$b Changhan$4edt 702 $aLee$b Changho$4oth 702 $aYoon$b Changhan$4oth 906 $aBOOK 912 $a9910557751503321 996 $aImaging Sensors and Applications$93024619 997 $aUNINA LEADER 01922nam 2200397z- 450 001 9910346917503321 005 20210212 010 $a1000015692 035 $a(CKB)4920000000101347 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/61707 035 $a(oapen)doab61707 035 $a(EXLCZ)994920000000101347 100 $a20202102d2010 |y 0 101 0 $ager 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aUntersuchungen zum Einsatz von Reformat aus flu?ssigen Kohlenwasserstoffen in der Hochtemperaturbrennstoffzelle SOFC 210 $cKIT Scientific Publishing$d2010 215 $a1 online resource (XIV, 204 p. p.) 225 1 $aSchriften des Instituts für Werkstoffe der Elektrotechnik, Universität Karlsruhe (TH) / Institut für Werkstoffe der Elektrotechnik 311 08$a3-86644-478-8 330 $aIn dieser Arbeit werden Untersuchungen an Hochtemperaturbrennstoffzellen-(SOFC) unter Bedingungen durchgefu?hrt, wie sie in elektrischen Bordnetzversorgungssystemen (APU-Systemen) im mobilen Bereich auftreten. Hierzu werden in Messungen Betriebspunkte identifiziert, an denen die Zelle ohne versta?rkte Degradation der elektrischen Leistung betrieben werden kann. Mit Hilfe mathematischer Modelle werden der Methanumsatz, der Konzentrationsverlauf der Gase und die Stack-Leistung wiedergegeben. 606 $aTechnology: general issues$2bicssc 610 $aAPU 610 $aBrennstoffzelle 610 $ainterne Reformierung 610 $aKraftstoff 610 $aMethanisierung 615 7$aTechnology: general issues 700 $aTimmermann$b Henrik$4auth$01305999 906 $aBOOK 912 $a9910346917503321 996 $aUntersuchungen zum Einsatz von Reformat aus flüssigen Kohlenwasserstoffen in der Hochtemperaturbrennstoffzelle SOFC$93028117 997 $aUNINA