LEADER 05130nam 2200649 450 001 996215653603316 005 20230803023201.0 010 $a3-433-60768-0 010 $a3-433-60425-8 010 $a3-433-60422-3 010 $a3-433-60424-X 035 $a(CKB)2550000001199640 035 $a(EBL)1603107 035 $a(SSID)ssj0001156013 035 $a(PQKBManifestationID)11611515 035 $a(PQKBTitleCode)TC0001156013 035 $a(PQKBWorkID)11199298 035 $a(PQKB)10775882 035 $a(OCoLC)874157879 035 $a(MiAaPQ)EBC1603107 035 $a(EXLCZ)992550000001199640 100 $a20140215h20132013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDesign of steel structures$hEurocode 3$iDesign of steel structures$hPart 1-1$iGeneral rules and rules for buildings /$fLui?s Simo?es da Silva, Rui Simo?es, Helena Gerva?sio 210 1$aBerlin, Germany :$cECCS - European Convention for Constructional Steelwork,$d2013. 210 4$dİ2013 215 $a1 online resource (456 p.) 300 $aDescription based upon print version of record. 311 $a1-306-40376-6 311 $a3-433-03091-X 320 $aIncludes bibliographical references. 327 $aCover; Title Page; Table of Contents; Foreword; Preface; Chapter 1: INTRODUCTION; 1.1. General Observations; 1.2. Codes of Practice and Normalization; 1.2.1. Introduction; 1.2.2. Eurocode 3; 1.2.3. Other standards; 1.3. Basis of Design; 1.3.1. Basic concepts; 1.3.2. Reliability management; 1.3.3. Basic variables; 1.3.3.1. Introduction; 1.3.3.2. Actions and environmental influences; 1.3.3.3. Material properties; 1.3.3.4. Geometrical data; 1.3.4. Ultimate limit states; 1.3.5. Serviceability limit states; 1.3.6. Durability; 1.3.7. Sustainability; 1.4. Materials; 1.4.1. Material specification 327 $a1.4.2. Mechanical properties1.4.3. Toughness and through thickness properties; 1.4.4. Fatigue properties; 1.4.5. Corrosion resistance; 1.5. Geometric Characteristics and Tolerances; Chapter 2: STRUCTURAL ANALYSIS; 2.1. Introduction; 2.2. Structural Modelling; 2.2.1. Introduction; 2.2.2. Choice of member axis; 2.2.3. Influence of eccentricities and supports; 2.2.4. Non-prismatic members and members with curved axis; 2.2.5. Influence of joints; 2.2.6. Combining beam elements together with two and three dimensional elements; 2.2.7. Worked examples; 2.3. Global Analysis of Steel Structures 327 $a2.3.1. Introduction2.3.2. Structural stability of frames; 2.3.2.1. Introduction; 2.3.2.2. Elastic critical load; 2.3.2.3. 2nd order analysis; 2.3.3. Imperfections; 2.3.4. Worked example; 2.4. Classification of Cross Sections; Chapter 3: DESIGN OF MEMBERS; 3.1. Introduction; 3.1.1. General; 3.1.2. Resistance of cross sections; 3.1.2.1. General criteria; 3.1.2.2. Section properties; 3.1.3. Buckling resistance of members; 3.2. Tension; 3.2.1. Behaviour in tension; 3.2.2. Design for tensile force; 3.2.3. Worked examples; 3.3. Laterally Restrained Beams; 3.3.1. Introduction 327 $a3.3.2. Design for bending3.3.2.1. Elastic and plastic bending moment resistance; 3.3.2.2. Uniaxial bending; 3.3.2.3. Bi-axial bending; 3.3.2.4. Net area in bending; 3.3.3. Design for shear; 3.3.4. Design for combined shear and bending; 3.3.5. Worked examples; 3.4. Torsion; 3.4.1. Theoretical background; 3.4.1.1. Introduction; 3.4.1.2. Uniform torsion; 3.4.1.3. Non-uniform torsion; 3.4.1.4. Cross section resistance in torsion; 3.4.2. Design for torsion; 3.4.3. Worked examples; 3.5. Compression; 3.5.1. Theoretical background; 3.5.1.1. Introduction; 3.5.1.2. Elastic critical load 327 $a3.5.1.3. Effect of imperfections and plasticity3.5.2. Design for compression; 3.5.3. Worked examples; 3.6. Laterally Unrestrained Beams; 3.6.1. Introduction; 3.6.2. Lateral-torsional buckling; 3.6.2.1. Introduction; 3.6.2.2. Elastic critical moment; 3.6.2.3. Effect of imperfections and plasticity; 3.6.3. Lateral-torsional buckling resistance; 3.6.4. Worked examples; 3.7. Beam-Columns; 3.7.1. Introduction; 3.7.2. Cross section resistance; 3.7.2.1. Theoretical background; 3.7.2.2. Design resistance; 3.7.3. Buckling resistance; 3.7.3.1. Theoretical background; 3.7.3.2. Design resistance 327 $a3.7.4. Worked examples 330 $aVi har inte fa?tt in na?gon beskrivning av boken fra?n fo?rlaget. Kolla ga?rna upp fo?rlagets (Wilhelm Ernst & Sohn Verlag fur Architektur und technische Wissenschaften) hemsida, da?r det kan finnas mer information. 606 $aSteel, Structural$xStandards$zEurope 606 $aBuilding, Iron and steel$xStandards$zEurope 615 0$aSteel, Structural$xStandards 615 0$aBuilding, Iron and steel$xStandards 676 $a624.182 700 $aSilva$b Luis Simo?es da$0883135 701 $aSimo?es$b Rui$0748257 701 $aGerva?sio$b Helena$0750299 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996215653603316 996 $aDesign of steel structures$93406447 997 $aUNISA LEADER 04139nam 2200961z- 450 001 9910557748703321 005 20220111 035 $a(CKB)5400000000045855 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76656 035 $a(oapen)doab76656 035 $a(EXLCZ)995400000000045855 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBiocomposite Inks for 3D Printing 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (213 p.) 311 08$a3-0365-1738-3 311 08$a3-0365-1737-5 330 $aThree-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (?-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks. 606 $aInformation technology industries$2bicssc 610 $a3D bioprinting 610 $a3D cell culture 610 $a3D printing 610 $aabsorption 610 $aadditive manufacturing 610 $aartificial limb 610 $abacteria biofabrication 610 $abacterial nanocellulose 610 $abioactive scaffold 610 $abiocomposite 610 $abiocomposite ink 610 $abiofabrication 610 $abioink 610 $abioinks 610 $abiomanufacturing 610 $abiomedicine 610 $abioprinting 610 $acancer 610 $acancer stemness 610 $acarboxylated agarose 610 $acellulose 610 $acellulose nanocrystals 610 $acellulose nanofibrils 610 $aclinical translational 610 $aCNF 610 $acollagen 610 $acytotoxicity 610 $adrug delivery 610 $aECM 610 $aextracellular matrix 610 $afibrils 610 $aforest-based MFC 610 $afree-standing 610 $afused deposition modeling (FDM) 610 $agrowth factor cocktail 610 $ahuman nasal chondrocytes 610 $ahydrogel 610 $ahydrogels 610 $an/a 610 $ananocellulose 610 $aphysical cross-linking 610 $apine sawdust 610 $apolyhydroxyalkanoates 610 $aprintability 610 $aprobiotic food 610 $ascaffolds 610 $asoda ethanol pulping 610 $atissue engineering 610 $atubular organ 610 $atubular tissue 610 $avessel stenting 610 $awound dressings 615 7$aInformation technology industries 700 $aCarrasco$b Gary$4edt$01278408 702 $aCarrasco$b Gary$4oth 906 $aBOOK 912 $a9910557748703321 996 $aBiocomposite Inks for 3D Printing$93013232 997 $aUNINA