LEADER 03981nam 2200997z- 450 001 9910557733503321 005 20210501 035 $a(CKB)5400000000046008 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68465 035 $a(oapen)doab68465 035 $a(EXLCZ)995400000000046008 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSimulation with Entropy Thermodynamics 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (222 p.) 311 08$a3-0365-0114-2 311 08$a3-0365-0115-0 330 $aBeyond its identification with the second law of thermodynamics, entropy is a formidable tool for describing systems in their relationship with their environment. This book proposes to go through some of these situations where the formulation of entropy, and more precisely, the production of entropy in out-of-equilibrium processes, makes it possible to forge an approach to the behavior of very different systems. Whether for dimensioning structures; influencing parameter variability; or optimizing power, efficiency, or waste heat reduction, simulations based on entropy production offer a tool that is both compact and reliable. In the case of systems marked by complexity, it appears to be the only way. In that sense, realistic optimization can be carried out, integrating within the same framework both the system and all the constraints and boundary conditions that define it. Simulations based on entropy give the researcher a powerful analytical framework that crosses the disciplines of physics and links them together. 606 $aResearch & information: general$2bicssc 610 $aAltenkirch-Ioffe model 610 $acolloids 610 $acomplex systems thermodynamics 610 $aconstant properties model 610 $aCuNi 610 $aDebye plasmas 610 $adevice modeling 610 $aefficiency 610 $aelectrical conductivity 610 $aelectronic entropy 610 $aenergy harvesting 610 $aentropy 610 $aentropy production 610 $aentropy pump mode 610 $aFeRh 610 $afigure of merit 610 $afinite time thermodynamics 610 $aFourier heat 610 $agenerator mode 610 $airreversible thermodynamics 610 $aIsing model 610 $aJoule heat 610 $aKadanoff-Baym equation 610 $aLaFeSi 610 $aliving systems 610 $amachine learning 610 $amaximum electrical power point 610 $anon-equilibrium quantum field theory 610 $aOhm law 610 $aoptimization 610 $aout of equilibrium thermodynamics 610 $apolyelectrolytes 610 $apower conversion 610 $apower factor 610 $apressure-ionization 610 $apulsed heat 610 $aquantum brain dynamics 610 $aquantum phase transition 610 $areactor modelling 610 $aSeebeck coefficient 610 $asegmented thermoelectric generator 610 $asuper-radiance 610 $aTEG performance 610 $atemperature profile 610 $athermodynamics 610 $athermoelectric generator 610 $athermoelectric materials 610 $athermoelectrics 610 $aThomson heat 610 $atransient 610 $atransport 610 $avariational autoencoder 610 $avoltage-electrical current curve 610 $aworking point 610 $aworking points 615 7$aResearch & information: general 700 $aGoupil$b Christophe$4edt$01328816 702 $aGoupil$b Christophe$4oth 906 $aBOOK 912 $a9910557733503321 996 $aSimulation with Entropy Thermodynamics$93038989 997 $aUNINA