LEADER 01242nam--2200409---450- 001 990000347150203316 005 20100611174639.0 010 $a88-8008-074-1 035 $a0034715 035 $aUSA010034715 035 $a(ALEPH)000034715USA01 035 $a0034715 100 $a20010228d2000----km-y0itay0103----ba 101 0 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aBalanced scorecard$etradurre la strategia in azione$fRobert S. Haplan, David P. Norton$ga cura di Alberto Bubbio 210 $aTorino$cIsedi$d2000 215 $aVII, 358 p.$d24 cm 606 $aAziende$xProgrammazione 606 $aAziende$xGestione 676 $a658.4012 700 1$aHAPLAN,$bRobert S.$0543116 701 1$aNORTON,$bDavid P.$0141836 702 1$aBOBBIO,$bAlberto 801 0$aIT$bsalbc$gISBD 912 $a990000347150203316 951 $a658.401 KAP (IRA 6 514)$b8755 E.C.$cIRA 6$d00070306 959 $aBK 969 $aECO 979 $aTAMI$b40$c20010228$lUSA01$h1612 979 $c20020403$lUSA01$h1642 979 $aPATRY$b90$c20040406$lUSA01$h1624 979 $aCAPRI$b90$c20100611$lUSA01$h1739 979 $aCAPRI$b90$c20100611$lUSA01$h1746 996 $aBalanced scorecard$9878673 997 $aUNISA LEADER 00928nam0 22002531i 450 001 UON00486518 005 20231205105312.909 100 $a20180306d1973 |0itac50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aPoverty and equally in Britain$fJ.C. Kincaid 210 $aNew York$cPeguin Books$d1973 215 $a245 P.$d19 cm. 316 $avalore stimabile$5IT-UONSI AnglCNR/0024 620 $aUS$dNew York$3UONL000050 700 1$aKINCAID$bJ.C$3UONV238419$0777596 712 $aPeguin Books$3UONV282990$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00486518 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI Angl CNR 0024 $eSI LO 14123 7 0024 valore stimabile 996 $aPoverty and equally in Britain$91740988 997 $aUNIOR LEADER 04788nam 2201285z- 450 001 9910557691803321 005 20210501 035 $a(CKB)5400000000044613 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68321 035 $a(oapen)doab68321 035 $a(EXLCZ)995400000000044613 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHyperspectral Remote Sensing of Agriculture and Vegetation 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (266 p.) 311 08$a3-03943-907-3 311 08$a3-03943-908-1 330 $aThis book shows recent and innovative applications of the use of hyperspectral technology for optimal quantification of crop, vegetation, and soil biophysical variables at various spatial scales, which can be an important aspect in agricultural management practices and monitoring. The articles collected inside the book are intended to help researchers and farmers involved in precision agriculture techniques and practices, as well as in plant nutrient prediction, to a higher comprehension of strengths and limitations of the application of hyperspectral imaging to agriculture and vegetation. Hyperspectral remote sensing for studying agriculture and natural vegetation is a challenging research topic that will remain of great interest for different sciences communities in decades. 606 $aEnvironmental economics$2bicssc 606 $aResearch & information: general$2bicssc 610 $aabaxial 610 $aadaxial 610 $aanalytical methods 610 $aAOTF 610 $aartificial intelligence 610 $abiodiversity 610 $aBRDF 610 $acanopy spectra 610 $achlorophyll content 610 $aclassification 610 $aclassification of agricultural features 610 $acontinuous wavelet transform (CWT) 610 $acorrelation coefficient 610 $acrop properties 610 $adiscrimination 610 $aDLARI 610 $aEragrostis tef 610 $aEthiopia 610 $aexpansive species 610 $afeature selection 610 $afield spectroscopy 610 $afuture hyperspectral missions 610 $agrapevine 610 $aheavy metals 610 $ahigh-resolution spectroscopy for agricultural soils and vegetation 610 $ahyperspectral 610 $ahyperspectral data as input for modelling soil, crop, and vegetation 610 $ahyperspectral databases for agricultural soils and vegetation 610 $ahyperspectral imaging 610 $ahyperspectral imaging for vegetation 610 $ahyperspectral LiDAR 610 $ahyperspectral remote sensing 610 $ahyperspectral remote sensing for soil and crops in agriculture 610 $ainvasive species 610 $aleaf chlorophyll content 610 $amacronutrient 610 $aMDATT 610 $amicronutrient 610 $aMLR 610 $amulti-angle observation 610 $aNatura 2000 610 $anew hyperspectral technologies 610 $aobject-oriented segmentation 610 $apartial least square regression (PLSR) 610 $apartial least squares 610 $apeanut 610 $aplant 610 $aplant traits 610 $aplatforms and sensors 610 $aPLS 610 $aprecision agriculture 610 $aproduct validation 610 $aproximal sensing data 610 $aproximal sensor 610 $arandom forest 610 $aRed Edge 610 $aremote sensing 610 $areplicability 610 $areproducibility 610 $asoil characteristics 610 $aspectra 610 $aspectral reflectance 610 $aspectroscopy 610 $asupport vector machine 610 $aSVM 610 $avegetation 610 $avegetation classification 610 $avegetation parameters 610 $awaveband selection 615 7$aEnvironmental economics 615 7$aResearch & information: general 700 $aPascucci$b Simone$4edt$01311963 702 $aPignatti$b Stefano$4edt 702 $aCasa$b Raffaele$4edt 702 $aDarvishzadeh$b Roshanak$4edt 702 $aHuang$b Wenjiang$4edt 702 $aPascucci$b Simone$4oth 702 $aPignatti$b Stefano$4oth 702 $aCasa$b Raffaele$4oth 702 $aDarvishzadeh$b Roshanak$4oth 702 $aHuang$b Wenjiang$4oth 906 $aBOOK 912 $a9910557691803321 996 $aHyperspectral Remote Sensing of Agriculture and Vegetation$93030627 997 $aUNINA