LEADER 03241nam 2200913z- 450 001 9910639993803321 005 20231214133144.0 010 $a3-0365-6305-9 035 $a(CKB)5470000001633415 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/95902 035 $a(EXLCZ)995470000001633415 100 $a20202301d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEmerging Power Electronics Technologies for Sustainable Energy Conversion 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (208 p.) 311 $a3-0365-6306-7 330 $aThis Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches. 606 $aTechnology: general issues$2bicssc 606 $aHistory of engineering & technology$2bicssc 606 $aEnergy industries & utilities$2bicssc 610 $aconstant power load 610 $aboost converter 610 $adiscontinuous conduction mode 610 $anonlinear control 610 $aswitched system 610 $afractional-order PID controller 610 $aDC-DC converters 610 $aNon-minimum phase systems 610 $aexperimental validation 610 $arenewable energy sources 610 $adc-dc power electronic converters 610 $aenergy efficiency 610 $aswitching DC-DC converters 610 $aquadratic converter 610 $aPV systems 610 $afuel cell 610 $anew equivalent electrical model of fuel cell 610 $aPEMFC NEXA 1200 610 $acomparative study 610 $amultilevel inverter 610 $apower electronics 610 $astaircase modulation 610 $avector modulation 610 $aultrawide bandgap 610 $asemiconductors 610 $aneutral point clamped 610 $ainverter 610 $asilicon 610 $agallium trioxide 610 $afabrication 610 $ahybridization 610 $aPV generation 610 $aspace vector modulation 610 $atransformerless inverters 610 $agrid connection 610 $aleakage ground current 610 $awind turbine generator (WTG) 610 $apermanent magnet synchronous generator (PMSG) 610 $alow voltage ride-through (LVRT) 610 $asilicon carbide (SiC)-based inverter 610 $acore losses methods 610 $apower losses 610 $aferromagnetic material 610 $ainductors 610 $atransformers 615 7$aTechnology: general issues 615 7$aHistory of engineering & technology 615 7$aEnergy industries & utilities 700 $aPerez-Pinal$b Francisco$4edt$01290751 702 $aPerez-Pinal$b Francisco$4oth 906 $aBOOK 912 $a9910639993803321 996 $aEmerging Power Electronics Technologies for Sustainable Energy Conversion$93021584 997 $aUNINA LEADER 03757nam 2200841z- 450 001 9910557625703321 005 20210501 035 $a(CKB)5400000000045158 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68447 035 $a(oapen)doab68447 035 $a(EXLCZ)995400000000045158 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aModelling of Wireless Power Transfer 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (148 p.) 311 08$a3-0365-0508-3 311 08$a3-0365-0509-1 330 $aWireless power transfer allows the transfer of energy from a transmitter to a receiver across an air gap, without any electrical connections. Technically, any device that needs power can become an application for wireless power transmission. The current list of applications is therefore very diverse, from low-power portable electronics and household devices to high-power industrial automation and electric vehicles. With the rise of IoT sensor networks and Industry 4.0, the presence of wireless energy transfer will only increase. In order to improve the current state of the art, models are being developed and tested experimentally. Such models allow simulating, quantifying, predicting, or visualizing certain aspects of the power transfer from transmitter(s) to receiver(s). Moreover, they often result in a better understanding of the fundamentals of the wireless link. This book presents a wonderful collection of peer-reviewed papers that focus on the modelling of wireless power transmission. It covers both inductive and capacitive wireless coupling and includes work on multiple transmitters and/or receivers. 606 $aHistory of engineering and technology$2bicssc 610 $a3-coil system 610 $acapacitive wireless power transfer 610 $acircuit modeling 610 $aClass-E power amplifier 610 $acoupling coefficient 610 $adesign guidelines 610 $adesign optimization 610 $aelectric field 610 $afinite element analysis 610 $agallium nitride 610 $agradient methods 610 $aimpedance matrix 610 $ainductive coupling 610 $ainductive power transmission 610 $amultiple coils 610 $amultiple-input single-output 610 $amultiports 610 $amutual inductance 610 $anumerical analysis 610 $aoptimal load 610 $aoutput characteristics 610 $apower gain 610 $apower measurement 610 $apower transfer efficiency (PTE) 610 $apower-transfer efficiency 610 $aresonance 610 $aresonance frequency 610 $aresonance-based wireless power transfer (R-WPT) 610 $aresonant 610 $ascattering matrix 610 $ashielded-capacitive power transfer 610 $asingle-input multiple-output 610 $asteady-state matrix analysis 610 $astrength 610 $atransfer impedance 610 $atransformer cores 610 $awireless charging 610 $awireless power transfer 610 $awireless power transfer (WPT) system 610 $awireless power transmission 615 7$aHistory of engineering and technology 700 $aMinnaert$b Ben$4edt$01280855 702 $aMongiardo$b Mauro$4edt 702 $aMinnaert$b Ben$4oth 702 $aMongiardo$b Mauro$4oth 906 $aBOOK 912 $a9910557625703321 996 $aModelling of Wireless Power Transfer$93017541 997 $aUNINA