LEADER 05290nam 2201597z- 450 001 9910557596503321 005 20231214133502.0 035 $a(CKB)5400000000043712 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76796 035 $a(EXLCZ)995400000000043712 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplications of Finite Element Modeling for Mechanical and Mechatronic Systems 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (392 p.) 311 $a3-0365-1555-0 311 $a3-0365-1556-9 330 $aModern engineering practice requires advanced numerical modeling because, among other things, it reduces the costs associated with prototyping or predicting the occurrence of potentially dangerous situations during operation in certain defined conditions. Thus far, different methods have been used to implement the real structure into the numerical version. The most popular uses have been variations of the finite element method (FEM). The aim of this Special Issue has been to familiarize the reader with the latest applications of the FEM for the modeling and analysis of diverse mechanical problems. Authors are encouraged to provide a concise description of the specific application or a potential application of the Special Issue. 606 $aTechnology: general issues$2bicssc 610 $anumerical modeling 610 $afinite volumne method 610 $aunderground coal mine 610 $aendogenous fires 610 $aspontaneous combustion 610 $alongwall 610 $aventilation system 610 $ashot peening 610 $aquantitative description of peening coverage 610 $ahigh peening coverage 610 $aAlmen intensity 610 $aresidual compressive stress 610 $ahybrid composite 610 $adamage 610 $aaramid fiber 610 $acarbon fiber 610 $afinite element method 610 $adelamination 610 $acut bar method 610 $athermal conductivity 610 $asteady-state 610 $aheat lakes 610 $afinite element modeling 610 $aaluminum conductor steel-reinforced cable 610 $abend deformation 610 $astress 610 $afriction coefficient 610 $awind loads 610 $afatigue fracture 610 $aFEM 610 $aSFEM 610 $aactive periodic structures 610 $asmart materials 610 $aPCHE 610 $amisalignment 610 $achannel 610 $autilization factor 610 $atorsion springs 610 $aFEA 610 $aNURBS 610 $aapplied load 610 $alocal behaviors 610 $adrill pipe joint 610 $adesign 610 $asealing properties 610 $aexperiment 610 $abias tire 610 $atextile cord 610 $ashrinkage 610 $arubber 610 $ainflation analysis 610 $anondestructive inspection 610 $acrack detection 610 $alow loading 610 $asurface profile 610 $aturbine blade 610 $afinite element analysis 610 $aswingarm 610 $asingle-sided 610 $aFinite Elements Analysis (FEA) 610 $athree-wheel motorcycle 610 $atopology optimization 610 $acollision modeling 610 $amechanical parameters 610 $acontact detection 610 $aweb deformation 610 $astrain deviation 610 $adesign of experiment 610 $aroll-to-roll process 610 $asolid mechanics 610 $afinite elements 610 $ahp-adaptivity 610 $anumerical locking 610 $adetection 610 $aassessment 610 $aresolution 610 $aequilibrated residual method 610 $asensitivity analysis 610 $ap-enrichment 610 $abell crank 610 $anatural frequency 610 $areverse engineering 610 $avibrometer 610 $aAbaqus 610 $anumerical simulation 610 $abiomechanics 610 $ahead injury 610 $asafety 610 $ainjury criteria 610 $adisability 610 $adriver 610 $aHALE UAV 610 $agenerative modelling 610 $athin-layer composite structure 610 $aelectro-mechanical systems 610 $apiezoelectrics 610 $ahierarchical models 610 $afirst-order models 610 $atransition models 610 $ahpq/hp-approximations 610 $aadaptivity 610 $astress gradients 610 $aconvergence 610 $adamage detection 615 7$aTechnology: general issues 700 $aKrawczuk$b Marek$4edt$01323774 702 $aPalacz$b Magdalena$4edt 702 $aKrawczuk$b Marek$4oth 702 $aPalacz$b Magdalena$4oth 906 $aBOOK 912 $a9910557596503321 996 $aApplications of Finite Element Modeling for Mechanical and Mechatronic Systems$93035839 997 $aUNINA