LEADER 04730nam 2201165z- 450 001 9910557594903321 005 20231214133448.0 035 $a(CKB)5400000000043728 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/69250 035 $a(EXLCZ)995400000000043728 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDislocation Mechanics of Metal Plasticity and Fracturing 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 electronic resource (188 p.) 311 $a3-03943-264-8 311 $a3-03943-265-6 330 $aThe modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects. 606 $aResearch & information: general$2bicssc 610 $adislocation mechanics 610 $ayield strength 610 $agrain size 610 $athermal activation 610 $astrain rate 610 $aimpact tests 610 $abrittleness transition 610 $afracturing 610 $acrack size 610 $afracture mechanics 610 $aHall-Petch equation 610 $aGriffith equation 610 $asize effect 610 $amechanical strength 610 $apearlitic steels 610 $asuspension bridge cables 610 $adislocation microstructure 610 $afractal analysis 610 $aplasticity 610 $arepresentative volume element 610 $adislocation structure 610 $adislocation correlations 610 $adislocation avalanches 610 $ananotwin 610 $ananograin 610 $aAu?Cu alloy 610 $amicro-compression 610 $aCu-Zr 610 $aECAP 610 $adeformation 610 $aquasi-stationary 610 $asubgrains 610 $agrains 610 $acoarsening 610 $aCu?Zr 610 $aultrafine-grained material 610 $adynamic recovery 610 $atransient 610 $aload change tests 610 $aCharpy impact test 610 $aGMAW 610 $aadditive manufacturing 610 $asecondary cracks 610 $aanisotropy 610 $alinear flow splitting 610 $acrystal plasticity 610 $aDAMASK 610 $atexture 610 $aEBSD 610 $acrack tip dislocations 610 $aTEM 610 $agrain rotation 610 $afatigue 610 $adislocation configurations 610 $aresidual stress 610 $aindentation 610 $aserration 610 $atemperature 610 $adislocation 610 $aartificial aging 610 $asolid solution 610 $aloading curvature 610 $aaluminum alloy 610 $aholistic approach 610 $adislocation group dynamics 610 $adynamic factor 610 $adislocation pile-up 610 $ayield stress 610 $adislocation creep 610 $afatigue crack growth rate 615 7$aResearch & information: general 700 $aArmstrong$b Ronald W$4edt$01304460 702 $aArmstrong$b Ronald W$4oth 906 $aBOOK 912 $a9910557594903321 996 $aDislocation Mechanics of Metal Plasticity and Fracturing$93027441 997 $aUNINA