LEADER 01068nam--2200361---450- 001 990002750320203316 005 20060615115813.0 010 $a88-04-52964-4 035 $a000275032 035 $aUSA01000275032 035 $a(ALEPH)000275032USA01 035 $a000275032 100 $a20060608d1993----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay|||z|||001yy 200 1 $a<> bambino nascosto$efavole per capire la psicologia nostra e dei nostri figli$fAlba Marcoli 210 $aMilano$cMondadori$d1993 215 $a316 p.$d20 cm 225 2 $aOscar saggi$v333 410 0$12001$aOscar saggi$v333 606 0 $aFanciulli$xPsicoterapia 676 $a618.928914 700 1$aMARCOLI,$bAlba$0526584 801 0$aIT$bsalbc$gISBD 912 $a990002750320203316 951 $aII.3. 2842(VI ps B 1269)$b189939 L.M.$cVI ps B$d00125311 959 $aBK 969 $aUMA 979 $aANNAMARIA$b90$c20060608$lUSA01$h1256 979 $aANNAMARIA$b90$c20060615$lUSA01$h1158 996 $aBambino nascosto$9863714 997 $aUNISA LEADER 04747nam 2201177z- 450 001 9910557594903321 005 20210501 035 $a(CKB)5400000000043728 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/69250 035 $a(oapen)doab69250 035 $a(EXLCZ)995400000000043728 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aDislocation Mechanics of Metal Plasticity and Fracturing 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (188 p.) 311 08$a3-03943-264-8 311 08$a3-03943-265-6 330 $aThe modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects. 606 $aResearch and information: general$2bicssc 610 $aadditive manufacturing 610 $aaluminum alloy 610 $aanisotropy 610 $aartificial aging 610 $aAu-Cu alloy 610 $abrittleness transition 610 $aCharpy impact test 610 $acoarsening 610 $acrack size 610 $acrack tip dislocations 610 $acrystal plasticity 610 $aCu-Zr 610 $aCu-Zr 610 $aDAMASK 610 $adeformation 610 $adislocation 610 $adislocation avalanches 610 $adislocation configurations 610 $adislocation correlations 610 $adislocation creep 610 $adislocation group dynamics 610 $adislocation mechanics 610 $adislocation microstructure 610 $adislocation pile-up 610 $adislocation structure 610 $adynamic factor 610 $adynamic recovery 610 $aEBSD 610 $aECAP 610 $afatigue 610 $afatigue crack growth rate 610 $afractal analysis 610 $afracture mechanics 610 $afracturing 610 $aGMAW 610 $agrain rotation 610 $agrain size 610 $agrains 610 $aGriffith equation 610 $aHall-Petch equation 610 $aholistic approach 610 $aimpact tests 610 $aindentation 610 $alinear flow splitting 610 $aload change tests 610 $aloading curvature 610 $amechanical strength 610 $amicro-compression 610 $ananograin 610 $ananotwin 610 $apearlitic steels 610 $aplasticity 610 $aquasi-stationary 610 $arepresentative volume element 610 $aresidual stress 610 $asecondary cracks 610 $aserration 610 $asize effect 610 $asolid solution 610 $astrain rate 610 $asubgrains 610 $asuspension bridge cables 610 $aTEM 610 $atemperature 610 $atexture 610 $athermal activation 610 $atransient 610 $aultrafine-grained material 610 $ayield strength 610 $ayield stress 615 7$aResearch and information: general 700 $aArmstrong$b Ronald W$4edt$01304460 702 $aArmstrong$b Ronald W$4oth 906 $aBOOK 912 $a9910557594903321 996 $aDislocation Mechanics of Metal Plasticity and Fracturing$93027441 997 $aUNINA