LEADER 04949nam 2201321z- 450 001 9910557594203321 005 20231214132956.0 035 $a(CKB)5400000000043735 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/69013 035 $a(EXLCZ)995400000000043735 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aExploring and Modeling the Magma-Hydrothermal Regime 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 electronic resource (262 p.) 311 $a3-03936-636-X 311 $a3-03936-637-8 330 $aThis Special Issue comprises 12 papers from authors in 10 countries with new insights on the close coupling between magma as an energy and fluid source with hydrothermal systems for the primary control of magmatic behavior. Data and interpretation are provided on the rise of magma through a hydrothermal system, the relative timing of magmatic and hydrothermal events, the temporal evolution of supercritical aqueous fluids associated with ore formation, the magmatic and meteoric contributions of water to the systems, the big picture for the highly active Krafla Caldera, Iceland, as well as the implications of results from drilling at Krafla concerning the magma?hydrothermal boundary. Some of the more provocative concepts are that magma can intrude a hydrothermal system silently, that coplanar and coeval seismic events signal ?magma fracking? beneath active volcanoes, that intrusive accumulations may far outlast volcanism, that arid climate favors formation of large magma chambers, and that even relatively dry rhyolite magma can rapidly convect and so lack a crystallizing mush roof. A shared theme is that hydrothermal and magmatic reservoirs need to be treated as a single system. 606 $aResearch & information: general$2bicssc 610 $ala soufrière 610 $aguadeloupe 610 $avolcanic gas 610 $avolcanic unrest 610 $ahydrothermal gas 610 $amultigas 610 $aextensometry 610 $aKrafla volcano 610 $ageothermal systems 610 $aconceptual models 610 $avolcanology 610 $amagma 610 $ahydrothermal 610 $afracking 610 $avolcanoes 610 $aKamchatka 610 $aigneous petrology 610 $atectonics 610 $aheat flow 610 $aglaciation 610 $aclimate 610 $aincremental pluton emplacement 610 $acontact metamorphism 610 $apetrochronology 610 $atitanite 610 $azircon 610 $aU-Pb dating 610 $athermometry 610 $ahydrothermal fluids 610 $aincremental intrusion 610 $ahydrothermal fluid 610 $amicrostructure 610 $adissolution 610 $aprecipitation 610 $atextural coarsening 610 $aalteration 610 $aporosity 610 $aeruption 610 $afracture 610 $apermeability 610 $adome emplacement 610 $ahydrothermal system 610 $aRSAM 610 $atremor 610 $agliding spectral lines 610 $aWhite Island 610 $aphreatic eruptions 610 $ageyser 610 $aUzon 610 $aCO2 610 $aTOUGH2 610 $amodeling 610 $aKirishima volcano group 610 $aEbinokogen Ioyama volcano 610 $ageothermal activity 610 $amultiple hydrothermal system 610 $amagmatic hydrothermal eruption 610 $akick upwelling 610 $aErdenet Cu?Mo deposit 610 $acathodoluminescence 610 $asupercritical fluid 610 $atransient fluid pressure 610 $amagmatic-hydrothermal system 610 $afluid inclusion 610 $amagma energy 610 $amagma convection 610 $aheat flux 610 $ageothermal energy 610 $amagma?hydrothermal 610 $aheat transport 610 $agas and fluid geochemistry 610 $aphreatic eruption 610 $avolcano monitoring 610 $ageophysical imaging 610 $adrilling 615 7$aResearch & information: general 700 $aEichelberger$b John C$4edt$01319395 702 $aKiryukhin$b Alexey$4edt 702 $aMollo$b Silvio$4edt 702 $aTsuchiya$b Noriyoshi$4edt 702 $aVilleneuve$b Marlène$4edt 702 $aEichelberger$b John C$4oth 702 $aKiryukhin$b Alexey$4oth 702 $aMollo$b Silvio$4oth 702 $aTsuchiya$b Noriyoshi$4oth 702 $aVilleneuve$b Marlène$4oth 906 $aBOOK 912 $a9910557594203321 996 $aExploring and Modeling the Magma-Hydrothermal Regime$93033873 997 $aUNINA