LEADER 05047nam 2201405z- 450 001 9910557547603321 005 20231214132820.0 035 $a(CKB)5400000000044130 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68309 035 $a(EXLCZ)995400000000044130 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aClimate variability and change in the 21th Century 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (384 p.) 311 $a3-0365-0108-8 311 $a3-0365-0109-6 330 $a- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models? outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept. 606 $aResearch & information: general$2bicssc 610 $aCalifornia 610 $ahydrologic regions 610 $awarming 610 $adrought 610 $aregional climate modeling 610 $ahydrological modeling 610 $abias correction 610 $amultivariate 610 $apseudo reality 610 $arainfall 610 $atrend analysis 610 $aMann?Kendall 610 $akriging interpolation 610 $amultiple climate models 610 $astandardized precipitation index (SPI) 610 $adroughts 610 $aweights 610 $aVu Gia-Thu Bon 610 $aclimate change 610 $aoptimal control 610 $ageoengineering 610 $aclimate manipulation 610 $aGCM 610 $aRCM 610 $aCMIP5 610 $aCORDEX 610 $aclimate model selection 610 $aupper Indus basin 610 $aNDVI 610 $aENSO 610 $awavelet 610 $atime series analysis 610 $aHluhluwe-iMfolozi Park 610 $aGoogle Earth Engine 610 $aMediterranean climate 610 $acluster analysis 610 $aobjective classification 610 $aERA5 610 $amega-fires 610 $aBayesian-model averaging 610 $amodel uncertainty 610 $aclimate-fire models 610 $aMono River watershed 610 $aclimate 610 $atemperature 610 $aheat wave 610 $aexcess heat factor 610 $aacclimatization 610 $aGreece 610 $aprecipitations 610 $aHurst exponent 610 $apersistence 610 $aspatial correlation 610 $aCaucasian region 610 $aRegional Climate Model 610 $aclimate classification 610 $abias correction methods 610 $aprecipitation 610 $aterrestrial ecosystems 610 $aGPP 610 $aLAI 610 $aCO2 fertilization effect 610 $afeedback 610 $asassandra watershed 610 $aCôte d?Ivoire 610 $aboreal region 610 $aextreme wind speed 610 $awind climate 610 $asoil frost 610 $awind damage risk management 610 $awind multiplier 610 $adownscaling 610 $atopography 610 $asurface roughness 610 $aVIIRS 610 $aMODIS 610 $aOLCI 610 $aRSB 610 $aSNPP 610 $aTerra 610 $aAqua 610 $aSentinel-3A 610 $areflective solar bands 610 $aintersensor comparison 610 $aintercalibration 610 $aSNO 610 $aclimate indices 610 $aclimate change and Conakry 615 7$aResearch & information: general 700 $aStefanidis$b Stefanos$4edt$01302986 702 $aTolika$b Konstantia$4edt 702 $aStefanidis$b Stefanos$4oth 702 $aTolika$b Konstantia$4oth 906 $aBOOK 912 $a9910557547603321 996 $aClimate variability and change in the 21th Century$93026808 997 $aUNINA