LEADER 04326nam 2201177z- 450 001 9910557505603321 005 20231214133346.0 035 $a(CKB)5400000000044500 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76841 035 $a(EXLCZ)995400000000044500 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHorticultural Crop Response to Different Environmental and Nutritional Stress 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (208 p.) 311 $a3-0365-1948-3 311 $a3-0365-1949-1 330 $aEnvironmental conditions and nutritional stress may greatly affect crop performance. Abiotic stresses such as temperature (cold, heat), water (drought, flooding), irradiance, salinity, nutrients, and heavy metals can strongly affect plant growth dynamics and the yield and quality of horticultural products. Such effects have become of greater importance during the course of global climate change. Different strategies and techniques can be used to detect, investigate, and mitigate the effects of environmental and nutritional stress. Horticultural crop management is moving towards digitized, precision management through wireless remote-control solutions, but data analysis, although a traditional approach, remains the basis of stress detection and crop management. This Special Issue summarizes the recent progress in agronomic management strategies to detect and reduce environmental and nutritional stress effects on the yield and quality of horticultural crops. 606 $aResearch & information: general$2bicssc 610 $aCapsicum annuum 610 $aheat units 610 $aplant population density 610 $ahail damage 610 $ababy corn 610 $anon-leguminous cover crops 610 $achopping 610 $ababy corn yield 610 $ababy corn quality 610 $akharif season 610 $aThuja standishii × plicata 610 $acontainer production 610 $anursery production 610 $avolumetric water content 610 $avegetables 610 $awater deficit 610 $aclimate change 610 $apolyols 610 $aminerals 610 $aflavonoids 610 $acarotenoids 610 $asalinity 610 $aevapotranspiration 610 $aleaching fraction 610 $acalcium 610 $acactus pear 610 $aGA3 610 $ainjection application 610 $aspraying application 610 $alignification 610 $aphotosynthesis 610 $achlorophyll 610 $aproline 610 $aion leakage 610 $asusceptibility 610 $aelectrical conductivity 610 $agreenhouse 610 $aimage processing 610 $anutrient stress 610 $aremote sensing 610 $aBradyrhizobium 610 $atemperature-dependent distribution 610 $anodule composition 610 $aproliferation in soil 610 $ainfection 610 $aFrench bean 610 $amangetout 610 $apeas 610 $aantioxidant 610 $aascorbic acid 610 $atotal phenolic content 610 $amineral composition 610 $aBradyrhizobium japonicum 610 $aBradyrhizobium elkanii 610 $atemperature effects 610 $agrowth 610 $acompetitive infection 610 $abiochemical constituents 610 $a?-carotene 610 $avitamins 610 $amicro-nutrients 610 $agrowing environments 610 $aBrix 610 $aTAcy 610 $anitrogen 610 $apotassium 610 $acompositional data 610 $acranberry yield parameters 610 $afirmness 610 $alocal diagnosis 610 $aredundancy analysis 615 7$aResearch & information: general 700 $aMarino$b Stefano$4edt$0763693 702 $aMarino$b Stefano$4oth 906 $aBOOK 912 $a9910557505603321 996 $aHorticultural Crop Response to Different Environmental and Nutritional Stress$93034752 997 $aUNINA