LEADER 07385nam 2202173z- 450 001 9910557503803321 005 20231214133441.0 035 $a(CKB)5400000000044518 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68408 035 $a(EXLCZ)995400000000044518 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEngineering Fluid Dynamics 2019-2020 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (384 p.) 311 $a3-0365-0214-9 311 $a3-0365-0215-7 330 $aThis book contains the successful submissions to a Special Issue of Energies entitled ?Engineering Fluid Dynamics 2019?2020?. The topic of engineering fluid dynamics includes both experimental and computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed original research articles and review articles. After one-and-a-half years, 59 papers were submitted and 31 were accepted for publication. The average processing time was about 41 days. The authors had the following geographical distribution: China (15); Korea (7); Japan (3); Norway (2); Sweden (2); Vietnam (2); Australia (1); Denmark (1); Germany (1); Mexico (1); Poland (1); Saudi Arabia (1); USA (1); Serbia (1). Papers covered a wide range of topics including analysis of free-surface waves, bridge girders, gear boxes, hills, radiation heat transfer, spillways, turbulent flames, pipe flow, open channels, jets, combustion chambers, welding, sprinkler, slug flow, turbines, thermoelectric power generation, airfoils, bed formation, fires in tunnels, shell-and-tube heat exchangers, and pumps. 606 $aHistory of engineering & technology$2bicssc 610 $aCFD 610 $agap resonance 610 $ahydrodynamic forces 610 $afree surface waves 610 $aURANS 610 $atwin-box deck 610 $aaerodynamics 610 $avortex shedding 610 $asplash lubrication 610 $adynamic motion 610 $agearbox 610 $achurning power losses 610 $anon-inertial coordinate system 610 $aground roughness 610 $ahill shape 610 $ahill slope 610 $alarge-eddy simulations 610 $aturbulent flow fields 610 $aturbulent structure 610 $acomputational fluid dynamics (CFD) 610 $alarge eddy simulations (LES) 610 $a3D hill 610 $acanopy 610 $aflow fields 610 $aradiation 610 $ablocked-off-region procedure 610 $aheat recuperation 610 $aanisotropic scattering 610 $amie particles 610 $anumerical simulation 610 $ahorizontal face angle 610 $aenergy dissipation rates 610 $astepped spillway 610 $aultra-low specific speed magnetic drive pump 610 $aorthogonal test 610 $asplitter blades 610 $aoptimized design 610 $apressure fluctuation 610 $aradial force 610 $adilution 610 $aturbulent flame 610 $apremixed 610 $aOH 610 $aCH2O 610 $aplanar laser-induced fluorescence 610 $aself-excited oscillation jet 610 $aorgan?Helmholtz nozzle 610 $apulse waterjet 610 $apressure pulsation amplitude 610 $aWMLES 610 $aVLSMs 610 $aLSMs 610 $aturbulent boundary flow 610 $aroughness 610 $asurrogate model 610 $adeep neural network 610 $amultiphase flow 610 $ahorizontal pipe 610 $aliquid holdup 610 $apressure gradient 610 $acoherent structures 610 $aturbulent boundary layer 610 $astability 610 $apre-multiplied wind velocity spectrum 610 $aspatial correlation coefficient field 610 $atunnel fires 610 $ajet fan speed 610 $aheat release rate 610 $aaspect ratio 610 $asmoke movement 610 $avisibility 610 $asmoke layer thickness 610 $asmoke stratification 610 $aorifice shape 610 $avertical jet 610 $avelocity ratio 610 $anumerical investigation 610 $ahydraulic characteristics 610 $aimpinging water jet 610 $aimpinging height 610 $anumerical calculation 610 $aswirler 610 $aoptimized 610 $agenetic algorithms 610 $arecirculation 610 $acombustion 610 $aexperimental validation 610 $awelding spatter 610 $adistribution 610 $ashield arc metal welding 610 $aparticle heat transfer 610 $afire risk 610 $asprinkler 610 $afire dynamics simulator (FDS) 610 $afire suppression 610 $aextinguishing coefficient 610 $asmoke logging 610 $asmoke spread 610 $apipe insulation 610 $afire growth rate index 610 $ascale factor 610 $avolume fraction 610 $aignition heat source 610 $amaximum heat release rate 610 $atime to reach maximum HRR (heat release rate) 610 $acontrol 610 $acylinder 610 $aenergy efficiency 610 $aclamping 610 $apneumatics 610 $aunsteady RANS simulation 610 $atwo-phase flow 610 $ariser-induced slug flow 610 $aLedaFlow 610 $aVOF-model 610 $aevacuation 610 $ainteraction between smoke and evacuees 610 $ainner smoke force 610 $amodified BR-smoke model 610 $atwin H-rotor vertical-axis turbines 610 $awake 610 $ainstability 610 $awavelet transform 610 $acomputational fluid dynamics (CFD), multiphysics 610 $aheat transfer 610 $athermoelectricity 610 $aautomotive 610 $atraditional market 610 $afire spread rate 610 $aradiant heat flux 610 $aseparation distance 610 $arotor stator interaction 610 $aboundary layer 610 $asecondary vortex 610 $aunsteady flow 610 $asubmerged jet 610 $aclimate change 610 $arenewable energy 610 $awind power 610 $aaccelerators 610 $aturbines 610 $apower extraction 610 $aBetz 610 $afreestream theory 610 $ahybrid simulation method 610 $amulti-fluid model 610 $adiscrete element method, sedimentation, bed formation 610 $aPIV 610 $ashell-and-tube 610 $ashell side 610 $atube bundle 610 $aheat exchanger 610 $abaffle 610 $amaldistribution 615 7$aHistory of engineering & technology 700 $aHjertager$b Bjørn$4edt$01282500 702 $aHjertager$b Bjørn$4oth 906 $aBOOK 912 $a9910557503803321 996 $aEngineering Fluid Dynamics 2019-2020$93018832 997 $aUNINA