LEADER 04546nam 2201417z- 450 001 9910557496203321 005 20210501 035 $a(CKB)5400000000042869 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68425 035 $a(oapen)doab68425 035 $a(EXLCZ)995400000000042869 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPlant Responses to Hypoxia 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (288 p.) 311 08$a3-0365-0148-7 311 08$a3-0365-0149-5 330 $aMolecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far. 606 $aBiology, life sciences$2bicssc 606 $aResearch & information: general$2bicssc 610 $aabiotic stress 610 $aacetolactate synthase 610 $aacidification 610 $aActivity of antioxidant enzymes 610 $aaerenchyma 610 $aaerobic fermentation 610 $aalternated stress 610 $aanaerobic fermentation 610 $aanaerobic germination 610 $aanaerobiosis 610 $aanoxia 610 $aanoxic signaling 610 $aapoplastic barrier 610 $aArabidopsis 610 $aauxin 610 $abarrier to radial oxygen loss (ROL) 610 $aChlorophyll content 610 $acoleoptile 610 $adevelopment 610 $adirect seeding 610 $adrought 610 $aEin2 610 $aenergy metabolism 610 $aethanol fermentation 610 $aethylene 610 $aflooding 610 $afluorescence microscopy 610 $afruit trees 610 $agermination 610 $ahypertrophied lenticels 610 $ahypoxia 610 $aimidazolinones 610 $ajasmonate 610 $aleaf desiccation 610 $aleaf gas exchange 610 $aleaf greenness 610 $alegumes 610 $alignin 610 $aLotus japonicus 610 $alow O2 stress 610 $amaize 610 $ametabolic adaptation 610 $ametabolomics 610 $amicroRNAs 610 $amode of action 610 $an/a 610 $aO. rufipogon 610 $aorganic compound 610 $aOryza glumaepatula 610 $aOryza sativa 610 $aoxygen sensing 610 $apH 610 $aphloem 610 $aPhysalis peruviana L. 610 $aphytoglobin 610 $aplant growth 610 $aplant water relations 610 $apost-submergence recovery 610 $apotassium 610 $aPRT6 N-degron pathway of proteolysis 610 $aPrunus 610 $aRbohD 610 $aregulatory mechanism 610 $arice 610 $arice (O. sativa) 610 $arice (Oryza sativa) 610 $aRNA-seq 610 $aroot 610 $aroot hypoxia 610 $aroot meristem 610 $aroot respiration 610 $ashoot to root ratio 610 $aSolanum dulcamara 610 $aSolanum lycopersicum 610 $aSolanum tuberosum 610 $astomatal conductance 610 $asuberin 610 $asubmergence 610 $aSubmergence 610 $ateosinte 610 $atranscription factor 610 $aTriticum aestivum 610 $aVII Ethylene Response Factor 610 $awaterlogging 610 $awaterlogging tolerance 610 $awild rice 615 7$aBiology, life sciences 615 7$aResearch & information: general 700 $aLoreti$b Elena$4edt$01290188 702 $aStriker$b Gustavo$4edt 702 $aLoreti$b Elena$4oth 702 $aStriker$b Gustavo$4oth 906 $aBOOK 912 $a9910557496203321 996 $aPlant Responses to Hypoxia$93021404 997 $aUNINA