LEADER 02026nam 2200385 n 450 001 996394871703316 005 20200824121239.0 035 $a(CKB)3810000000009516 035 $a(EEBO)2240866020 035 $a(UnM)99828922e 035 $a(UnM)99828922 035 $a(EXLCZ)993810000000009516 100 $a19950512d1699 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 00$aVox luminarium: or, The voice of the sun & moon$b[electronic resource] $ebeing a genuine prediction of the most considerable actions, and accidents, likely to happen in the year, 1699. 1700. and 1701. Fairly deduced from 5 visible eclipses of the luminaries: three great and formidable ones, and two more less more particularly of that great and wonderful ecclipse of the sun, which will happen on the 13th day of the next approaching month September, when 11 digits of the sun's face will be quite darkned [sic], and it's effects, or significations more terrible, than that of Black Monday. In the year, 1652. Modestly hinting to all Europe, and every kingdom and state therein, the probable contingencies signified to them, by the signs of Heaven. By William Knight, student in astrology, physick, and chirurgery 210 $aLondon $cprinted and sold by Benj. Harris, at the Golden Boar's-head against the Cross-Keys-Inn in Grace-church-street$dM DC XC IX. [1699] 215 $a[2], 22 p. $cill 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aSolar eclipses$y1699$vEarly works to 1800 606 $aAstrology$vEarly works to 1800 606 $aLunar eclipses$y1699$vEarly works to 1800 615 0$aSolar eclipses 615 0$aAstrology 615 0$aLunar eclipses 700 $aKnight$b William$ffl. 1680-1699.$01007653 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996394871703316 996 $aVox luminarium: or, The voice of the sun & moon$92413012 997 $aUNISA LEADER 03897nam 2200829z- 450 001 9910557401503321 005 20210501 035 $a(CKB)5400000000043662 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68490 035 $a(oapen)doab68490 035 $a(EXLCZ)995400000000043662 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aLatest Advances in Electrothermal Models 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (140 p.) 311 08$a3-0365-0334-X 311 08$a3-0365-0335-8 330 $aThis book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode-transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale. 606 $aHistory of engineering and technology$2bicssc 610 $aalgorithm convergence analysis 610 $aalgorithm efficiency analysis 610 $aaveraged model 610 $aBJT 610 $acompact thermal models 610 $acomputational complexity analysis 610 $aDC-DC converter 610 $adevice thermal coupling 610 $adiode-transistor switch 610 $aDual-Phase-Lag heat transfer model 610 $aelectrothermal (ET) simulation 610 $aelectrothermal model 610 $aferromagnetic cores 610 $afinite difference method scheme 610 $aFinite Difference Method scheme 610 $afinite-element method (FEM) 610 $aGru?nwald-Letnikov fractional derivative 610 $aIGBT 610 $ainductors 610 $aKrylov subspace-based model order reduction 610 $amicroprocessor 610 $amodel-order reduction (MOR) 610 $amodelling 610 $amulti-LED lighting modules 610 $amulticellular power MOSFET 610 $apower electronics 610 $arelative error analysis 610 $aself-heating 610 $asilicon carbide 610 $asilicon carbide (SiC) 610 $aSPICE 610 $atemperature sensors 610 $athermal measurements 610 $athermal model 610 $athermal phenomena 610 $athermal resistance 610 $athermal simulation algorithm 610 $athroughput improvement 610 $atransient thermal impedance 615 7$aHistory of engineering and technology 700 $aGórecki$b Krzysztof$4edt$01302753 702 $aGórecki$b Pawe?$4edt 702 $aGórecki$b Krzysztof$4oth 702 $aGórecki$b Pawe?$4oth 906 $aBOOK 912 $a9910557401503321 996 $aLatest Advances in Electrothermal Models$93026515 997 $aUNINA