LEADER 03883nam 2200817z- 450 001 9910557401503321 005 20231214133639.0 035 $a(CKB)5400000000043662 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68490 035 $a(EXLCZ)995400000000043662 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLatest Advances in Electrothermal Models 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (140 p.) 311 $a3-0365-0334-X 311 $a3-0365-0335-8 330 $aThis book is devoted to the latest advances in the area of electrothermal modelling of electronic components and networks. It contains eight sections by different teams of authors. These sections contain the results of: (a) electro-thermal simulations of SiC power MOSFETs using a SPICE-like simulation program; (b) modelling thermal properties of inductors taking into account the influence of the core volume on the efficiency of heat removal; (c) investigations into the problem of inserting a temperature sensor in the neighbourhood of a chip to monitor its junction temperature; (d) computations of the internal temperature of power LEDs situated in modules containing multiple-power LEDs, taking into account both self-heating in each power LED and mutual thermal couplings between each diode; (e) analyses of DC-DC converters using the electrothermal averaged model of the diode?transistor switch, including an IGBT and a rapid-switching diode; (f) electrothermal modelling of SiC power BJTs; (g) analysis of the efficiency of selected algorithms used for solving heat transfer problems at nanoscale; (h) analysis related to thermal simulation of the test structure dedicated to heat-diffusion investigation at the nanoscale. 606 $aHistory of engineering & technology$2bicssc 610 $aDual-Phase-Lag heat transfer model 610 $athermal simulation algorithm 610 $athermal measurements 610 $aFinite Difference Method scheme 610 $aGrünwald?Letnikov fractional derivative 610 $aKrylov subspace-based model order reduction 610 $aalgorithm efficiency analysis 610 $arelative error analysis 610 $aalgorithm convergence analysis 610 $acomputational complexity analysis 610 $afinite difference method scheme 610 $aBJT 610 $amodelling 610 $aself-heating 610 $asilicon carbide 610 $aSPICE 610 $aIGBT 610 $aDC?DC converter 610 $aelectrothermal model 610 $aaveraged model 610 $athermal phenomena 610 $adiode?transistor switch 610 $apower electronics 610 $amulti-LED lighting modules 610 $adevice thermal coupling 610 $acompact thermal models 610 $atemperature sensors 610 $amicroprocessor 610 $athroughput improvement 610 $ainductors 610 $aferromagnetic cores 610 $athermal model 610 $atransient thermal impedance 610 $athermal resistance 610 $aelectrothermal (ET) simulation 610 $afinite-element method (FEM) 610 $amodel-order reduction (MOR) 610 $amulticellular power MOSFET 610 $asilicon carbide (SiC) 615 7$aHistory of engineering & technology 700 $aGórecki$b Krzysztof$4edt$01302753 702 $aGórecki$b Pawe?$4edt 702 $aGórecki$b Krzysztof$4oth 702 $aGórecki$b Pawe?$4oth 906 $aBOOK 912 $a9910557401503321 996 $aLatest Advances in Electrothermal Models$93026515 997 $aUNINA