LEADER 04797nam 2201189z- 450 001 9910557343803321 005 20231214133545.0 035 $a(CKB)5400000000042453 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76870 035 $a(EXLCZ)995400000000042453 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Pyrometallurgy 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (196 p.) 311 $a3-0365-1849-5 311 $a3-0365-1850-9 330 $aThere are several major megatrends having an impact on pyrometallurgical metal processing. The steadily growing demand for all metals is strengthened by the emergence of electrical vehicles (EV), which brings a high need for battery metals, but additionally, a significant increase in copper consumption. Even if only moderate forecasts for the number of the EVs become true, production of the base metals must increase by tens of percentages, or even more than double. At the same time, pyrometallurgical processes have to produce fewer side products, such as slag, and maintain the quality level of the primary product, although raw material mixtures are increasingly complex and new elements are entering the processes in secondary raw materials. Therefore, it is imperative to continue the development of pyrometallurgical processes more efficiently and productively, while still improving their selectivity regarding slagging the unwanted material and recovering the desired elements. This Special Issue is for current advances in the pyrometallurgical processing of metals, including all aspects, namely, the basic unit processes and operations in a smelter, metallurgical engineering, furnace integrity, cooling systems, modelling, slag and offgas handling, to name a few. A collection of 13 papers deal with ferrous and ferroalloy development, and the processing of different raw materials for metal production. 606 $aTechnology: general issues$2bicssc 610 $ablast furnace slag 610 $aTiO2 610 $atitanium carbonitride 610 $aviscosity 610 $alimonite 610 $amagnetization reduction roasting 610 $arotary kiln 610 $adeposit 610 $afayalite 610 $aFeO 610 $aliquid phase 610 $amedium manganese steel 610 $aspinel inclusions 610 $aCe treatment 610 $amodification mechanism 610 $acopper concentrate 610 $apyrometallurgy 610 $aflash smelting 610 $acombustion 610 $aclassification 610 $aspectroscopy 610 $aPCA 610 $aSIMCA 610 $aPLS-DA 610 $ak-NN 610 $asupport vector machines 610 $ascandium 610 $amaster alloys 610 $aaluminum alloys 610 $ametallothermy 610 $avacuum induction melting 610 $afactsage 610 $anickel laterite 610 $anon-melting reducing 610 $asodium chloride 610 $amagnetic separation 610 $agarnierite 610 $avacuum carbothermal reduction 610 $amechanism 610 $aCaF2 610 $arecovery 610 $adevolatilization 610 $atorrefied biomass 610 $abio-coal 610 $avolatile matter 610 $areduction 610 $ablast furnace 610 $amultistage and deep reduction 610 $alow-oxygen high titanium ferroalloy 610 $ainclusions 610 $amelt separation 610 $aslag-metal separation 610 $ahearth drainage 610 $airon and slag flow 610 $ainterface phenomena 610 $aCaO-SiO2-FetO-P2O5 slag system 610 $adistribution ratio of phosphorus 610 $adephosphorization 610 $an·2CaO·SiO2-3CaO·P2O5 solid solution 610 $aB2O3 610 $avanadium?titanium sintering 610 $ametallurgical properties 610 $amicrostructures 610 $aSøderberg electrodes 610 $asubmerged arc furnace (SAF) 610 $aferro-alloy production 610 $aferrochrome 610 $aelectrical resistivity 610 $adegree of graphitisation 610 $abulk density 610 $aporosity 610 $acompressive breaking strength 615 7$aTechnology: general issues 700 $aJokilaakso$b Ari$4edt$01303369 702 $aJokilaakso$b Ari$4oth 906 $aBOOK 912 $a9910557343803321 996 $aAdvances in Pyrometallurgy$93026957 997 $aUNINA