LEADER 01005nam--2200349---450- 001 990003589140203316 005 20120113092526.0 035 $a000358914 035 $aUSA01000358914 035 $a(ALEPH)000358914USA01 035 $a000358914 100 $a20111114d1916----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $a||||||||001yy 200 1 $aChristus$emanuel d'histoire des religions$fpar Joseph Huby 210 $aParis$cGabriel Beauchesne$d1916 215 $aXX, 1318 p.$d18 cm 606 0 $aReligioni$xStoria$2BNCF 676 $a200.9 700 1$aHUBY,$bJoseph$0610887 801 0$aIT$bsalbc$gISBD 912 $a990003589140203316 951 $aXV.2.A. 796$b1501 F.C.$cXV.2.A. 959 $aBK 969 $aCUOMO 979 $aCACCAVO$b90$c20111114$lUSA01$h0933 979 $aCACCAVO$b90$c20111114$lUSA01$h0937 979 $aCACCAVO$b90$c20111114$lUSA01$h0940 979 $aANNAMARIA$b90$c20120113$lUSA01$h0925 996 $aChristus$91136127 997 $aUNISA LEADER 03786nam 2200733z- 450 001 9910557299303321 005 20210501 035 $a(CKB)5400000000041046 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68972 035 $a(oapen)doab68972 035 $a(EXLCZ)995400000000041046 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSymmetric and Asymmetric Distributions$eTheoretical Developments and Applications 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (146 p.) 311 08$a3-03936-646-7 311 08$a3-03936-647-5 330 $aIn recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results. 517 $aSymmetric and Asymmetric Distributions 606 $aHumanities$2bicssc 606 $aSocial interaction$2bicssc 610 $aasymmetric bimodal distribution 610 $abimodal 610 $abimodality 610 $abivariate densities 610 $aEM algorithm 610 $aEpsilon-skew-Cauchy 610 $aEpsilon-skew-Normal 610 $aFisher information matrix 610 $afitting distributions 610 $aflexible skew-normal distribution 610 $ageneralized Cauchy distributions 610 $ahalf-normal distribution 610 $aidentifiability 610 $akurtosis 610 $alikelihood 610 $amaximum likelihood 610 $amaximum likelihood estimates 610 $amaximum likelihood estimation 610 $amoments 610 $anormal distribution 610 $aordering 610 $apositive and negative skewness 610 $apower-normal distribution 610 $aprobabilistic distribution class 610 $askew Birnbaum-Saunders distribution 610 $askewness coefficient 610 $aslashed half-normal distribution 610 $atruncation 610 $atype I and II censoring 610 $aWeibull censored data 615 7$aHumanities 615 7$aSocial interaction 700 $aGómez Déniz$b Emilio$4edt$01310957 702 $aGómez Déniz$b Emilio$4oth 906 $aBOOK 912 $a9910557299303321 996 $aSymmetric and Asymmetric Distributions$93029951 997 $aUNINA