LEADER 04944nam 2201357z- 450 001 9910557294103321 005 20231214133225.0 035 $a(CKB)5400000000041098 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68637 035 $a(EXLCZ)995400000000041098 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTi-Based Biomaterials$eSynthesis, Properties and Applications 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 electronic resource (268 p.) 311 $a3-03928-987-X 311 $a3-03928-988-8 330 $aRecently, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical, and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics, and traumatology. Titanium biocompatibility is practically the highest of all metallic biomaterials; however, new solutions are being sought to continuously improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. This book covers broad aspects of Ti-based biomaterials concerning the design of their structure, mechanical, and biological properties. This book demonstrates that the new Ti-based compounds and their surface treatment provide the best properties for biomedical applications. 517 $aTi-Based Biomaterials 606 $aHistory of engineering & technology$2bicssc 610 $aPowder Bed Fusion 610 $aTitanium alloys 610 $aCobalt?Chrome alloys 610 $aanisotropy 610 $abcc Ti-Mo-Zr alloys 610 $aInter-diffusion coefficient 610 $aImpurity coefficient 610 $aAtomic mobility 610 $aCALPHAD modeling 610 $atitanium 610 $alow frequency 610 $ainductive transmission 610 $ametallic housing 610 $ahermetic sealing 610 $alongevity 610 $aFEM model 610 $aactive implantable medical devices 610 $astainless 610 $anitinol 610 $adiaphyseal fracture 610 $aimplant 610 $aosseointegration 610 $abiocompatibility 610 $abioactive ceramic coatings 610 $asphene 610 $aECAP 610 $aConform 610 $acontinuous extrusion 610 $awire 610 $amedical implants 610 $aplasma spraying 610 $aTi coating 610 $apolymers 610 $abiomaterials 610 $aheat treatment 610 $ain situ alloying 610 $alaser additive manufacturing 610 $amechanical properties 610 $amicrostructure 610 $aTi?Nb alloy 610 $aNi-Ti alloy 610 $asurface characteristics 610 $ahydrophobic 610 $amagnetic mixed EDM 610 $aTiO2 nanotubes 610 $acrystallization 610 $agaseous plasma 610 $abiological response 610 $amechanical alloying 610 $ananoprecursor 610 $aelectric pulse-assisted sintering 610 $ametal matrix composites 610 $atitanium plate 610 $aamine plasma 610 $asurface modification 610 $ahydrophilicity 610 $anew bone formation 610 $atitanium-based foams 610 $athermal dealloying 610 $atitanium alloy 610 $abiomaterial 610 $aTiMoZrTa 610 $aTiMoSi 610 $alow elasticity modulus 610 $acorrosion 610 $atitanium alloys 610 $amicrostructures 610 $aTNTZ 610 $acopper 610 $aTi2Cu 610 $aTi3Cu 610 $aantibacterial 610 $ashape memory alloy 610 $atemperature variable micro-compression test 610 $asingle crystal 610 $abiomedical alloy 610 $aselective electron beam additive manufacture 610 $aTi6Al4V ELI alloy 610 $aphase transformation 610 $aspatial 610 $agradient energy density 610 $amartensitic decomposition 610 $aTi3Al intermetallic compound 610 $afracture analysis 610 $abiofunctionalization 615 7$aHistory of engineering & technology 700 $aJakubowicz$b Jaros?aw$4edt$01310956 702 $aJakubowicz$b Jaros?aw$4oth 906 $aBOOK 912 $a9910557294103321 996 $aTi-Based Biomaterials$93029950 997 $aUNINA