LEADER 03228nam 2200805z- 450 001 9910557292103321 005 20210501 035 $a(CKB)5400000000041118 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68979 035 $a(oapen)doab68979 035 $a(EXLCZ)995400000000041118 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSymmetry in Complex Systems 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (118 p.) 311 08$a3-03936-894-X 311 08$a3-03936-895-8 330 $aComplex systems with symmetry arise in many fields, at various length scales, including financial markets, social, transportation, telecommunication and power grid networks, world and country economies, ecosystems, molecular dynamics, immunology, living organisms, computational systems, and celestial and continuum mechanics. The emergence of new orders and structures in complex systems means symmetry breaking and transitions from unstable to stable states. Modeling complexity has attracted many researchers from different areas, dealing both with theoretical concepts and practical applications. This Special Issue fills the gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems. 606 $aHistory of engineering and technology$2bicssc 610 $aadapted PageRank algorithm 610 $aadiabatic invariant 610 $aBanach space 610 $abifurcation theory 610 $abiplex networks 610 $aCaputo derivative 610 $acomplex networks 610 $acomplex systems 610 $aconserved quantity 610 $acooperative 610 $adivided difference 610 $aFourier transform 610 $afractional calculus 610 $afunction approximation 610 $ageneralized Fourier law 610 $aKung-Traub method 610 $aLaplace transform 610 $aLipschitz constant 610 $alocal convergence 610 $aMei symmetry 610 $aMittag-Leffler function 610 $amobile robots 610 $amulti-agent system (MAS) 610 $amultiplex networks 610 $aneighbor node 610 $anetworks centrality 610 $anon-Fourier heat conduction 610 $anon-standard Lagrangians 610 $anonlinear dynamical systems 610 $aOpportunistic complex social network 610 $aPageRank vector 610 $aprobability model 610 $aquasi-fractional dynamical system 610 $aradius of convergence 610 $areinforcement learning (RL) 610 $asocial relationship 610 $asymmetry-breaking 615 7$aHistory of engineering and technology 700 $aMachado$b J. A. Tenreiro$4edt$01249366 702 $aLopes$b António$4edt 702 $aMachado$b J. A. Tenreiro$4oth 702 $aLopes$b António$4oth 906 $aBOOK 912 $a9910557292103321 996 $aSymmetry in Complex Systems$93027593 997 $aUNINA