LEADER 06832nam 2202017z- 450 001 9910557289403321 005 20231214133301.0 035 $a(CKB)5400000000041146 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/69359 035 $a(EXLCZ)995400000000041146 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPhysiological and Molecular Characterization of Crop Resistance to Abiotic Stresses 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 electronic resource (488 p.) 311 $a3-03943-458-6 311 $a3-03943-459-4 330 $aAbiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered. 606 $aResearch & information: general$2bicssc 606 $aBiology, life sciences$2bicssc 610 $asilicon 610 $astrawberry 610 $atotal antioxidants 610 $adrought 610 $astress responses 610 $aarbuscular mycorrhizal fungus (AMF) 610 $aRhizophagus clarus 610 $aflood 610 $aplants 610 $ahormonal homeostasis 610 $aphysiological activity 610 $adrought tolerance 610 $aLEA 610 $aTevang 1 maize 610 $atobacco 610 $axylem vessel 610 $awater stress 610 $aroot anatomy 610 $avegetable crops 610 $astomatal conductance 610 $acanopy temperature 610 $achlorophyll fluorescence 610 $aSPAD 610 $acommon buckwheat 610 $acotyledon 610 $aroot 610 $adrought stress 610 $atranscriptome analysis 610 $aalfalfa 610 $aevaluation 610 $agrowth 610 $aheat stress 610 $aphysiological traits 610 $asodium azide 610 $aokra 610 $awaterlogging stress 610 $aantioxidants 610 $agene expression 610 $asalinity 610 $asodium 610 $apotassium 610 $aion homeostasis-transport determinants 610 $aCBL gene family 610 $aProvitamin A 610 $amaize 610 $amorphological 610 $aphysiological 610 $abiochemical 610 $a?-carotene 610 $aCapsicum annuum L. 610 $asalt stress 610 $asalicylic acid 610 $ayeast 610 $aproline 610 $apomegranate 610 $atranscriptome 610 $atissue-specific 610 $asignaling transduction pathways 610 $atranscription factors 610 $aultrastructure 610 $aosmotic stress 610 $awheat 610 $abarley 610 $asummer maize 610 $afemale panicle 610 $aAbiotic stress 610 $aclimate change 610 $acombined drought and heat stress 610 $agenetic resources 610 $alandrace accessions 610 $acoated-urea fertilizer 610 $ahumic acid 610 $alignosulfonate 610 $anatural polymers 610 $aseaweed extract 610 $aaquaporin 610 $aBrassica rapa 610 $agas exchange parameters 610 $aroot hydraulic conductance 610 $azinc 610 $aALA 610 $aabiotic stress 610 $achlorophyll 610 $aphotosynthesis 610 $aantioxidant enzyme 610 $atomato cultivars 610 $asalinity tolerance 610 $aantioxidant activity 610 $alycopene 610 $aascorbic acid 610 $atotal polyphenols content 610 $aCapsicum annuum 610 $aroot structure 610 $aroot hairs 610 $aphosphorus use efficiency 610 $aP-starvation 610 $amacrominerals 610 $anutrient 610 $abreeding 610 $aeggplant 610 $awild relative 610 $avegetative growth 610 $aion homeostasis 610 $aosmolytes 610 $aoxidative stress 610 $aPhaseolus 610 $alandrace 610 $aseed 610 $agermination 610 $agenetic approach 610 $asustainable agriculture 610 $aweeds 610 $anatural herbicides 610 $asecondary metabolites 610 $apostemergence 610 $aphytotoxicity 610 $aabiotic stress biomarkers 610 $abean landraces 610 $aplant breeding 610 $asalt stress tolerance 610 $awater deficit 610 $awater stress tolerance 610 $atea plant 610 $acold stress 610 $achitosan oligosaccharide 610 $aphysiological response 610 $aplant growth 610 $aagriculture 610 $atraditions 610 $apseudo-science 610 $alunar phases 610 $aphysics 610 $abiology 610 $aeducation 610 $aflooding 610 $anutrient stress 610 $aROS 615 7$aResearch & information: general 615 7$aBiology, life sciences 700 $aBoscaiu$b Monica$4edt$01304681 702 $aFita$b Ana$4edt 702 $aBoscaiu$b Monica$4oth 702 $aFita$b Ana$4oth 906 $aBOOK 912 $a9910557289403321 996 $aPhysiological and Molecular Characterization of Crop Resistance to Abiotic Stresses$93027590 997 $aUNINA