LEADER 03184nam 22005533a 450 001 9910557272503321 005 20250203232517.0 024 8 $ahttps://doi.org/10.6093/978-88-6887-095-9 035 $a(CKB)5400000000041238 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/72020 035 $a(ScCtBLL)866d6710-5be4-4dc6-ba31-6287787ed6f6 035 $a(oapen)doab72020 035 $a(EXLCZ)995400000000041238 100 $a20250203i20212022 uu 101 0 $aita 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aComunicare l'assenza : $eL'Incompiuta di Venosa tra conservazione e innovazione /$fMarco Lucignano$hVolume 4 210 $aNapoli$cFedOA - Federico II University Press$d2021 210 1$a[s.l.] :$cFedOA - Federico II University Press,$d2021. 215 $a1 electronic resource (238 p.) 225 1 $aTRIA Urban Studies 311 08$a9788868870959 311 08$a8868870959 330 $aAll'interno del Parco Archeologico di Venosa, in provincia di Potenza, domina una grande croce scoperta, emblema del non-finito medievale: l'Incompiuta, parte dell'abbazia della SS. Trinitą. Attraverso le vicende storiche che l'hanno vista protagonista, la presente ricerca analizza il rapporto della chiesa con la colonia romana Venusia e, successivamente, con la cittą medievale. Tale approccio ha consentito di conoscere il contesto storico, sociale, urbanistico e tecnologico in cui l'Incompiuta si inseriva, come basi per una attendibile lettura morfologica e architettonica del manufatto. Il rilievo dell'abbaziale mediante tecniche di fotogrammetria digitale ha fornito un modello tridimensionale dettagliato, indispensabile per la conoscenza dello stato di fatto dell'organismo architettonico, connotato da un elevato grado di fragilitą. Le ipotesi ricostruttive sono state supportate e validate dal rapporto costante con il digital twin derivato dal rilievo e dalle analogie con altre chiese franco-benedettine coeve, e hanno lo scopo di valorizzare l'ambizioso progetto architettonico non ultimato. La predisposizione inoltre di contenuti digitali in realtą aumentata e realtą virtuale per la comunicazione dell'architettura e dei suoi paramenti decorativi hanno infine lo scopo di sperimentare un nuovo livello di fruizione, basato sull'immersivitą nelle spazialitą ricostruite e sull'interazione con le forme architettoniche e scultoree attraverso gli elementi digitali immessi nello spazio fisico mediante la realtą aumentata. 410 $aTRIA Urban Studies 606 $axxxx$2bicssc 610 $aEnhancement 610 $a3d modelling 610 $arendering 610 $aICT 610 $aVirtual Reality 610 $aAugmented Reality 610 $aarchaeology 610 $aabbey 610 $aVenosa 610 $acultural heritage 610 $aphotogrammetry 610 $adigital survey 615 7$axxxx 700 $aLucignano$b Marco$01296987 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910557272503321 996 $aComunicare l'assenza$94322007 997 $aUNINA LEADER 04351nam 2200949z- 450 001 9910557285103321 005 20210501 035 $a(CKB)5400000000041189 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/69216 035 $a(oapen)doab69216 035 $a(EXLCZ)995400000000041189 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNumerical Methods 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (184 p.) 311 08$a3-03943-318-0 311 08$a3-03943-319-9 330 $aNumerical methods are a specific form of mathematics that involve creating and use of algorithms to map out the mathematical core of a practical problem. Numerical methods naturally find application in all fields of engineering, physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses of numerical methods include approximation, simulation, and estimation, and there is almost no scientific field in which numerical methods do not find a use. Results communicated here include topics ranging from statistics (Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions) and Statistical software packages (dCATCH-A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS) to new approaches for numerical solutions (Exact Solutions to the Maxmin Problem max?Ax? Subject to ?Bx??1; On q-Quasi-Newton's Method for Unconstrained Multiobjective Optimization Problems; Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method; On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence; Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers' Equations) to the use of wavelets (Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron) and methods for visualization (A Simple Method for Network Visualization). 606 $aMathematics & science$2bicssc 606 $aResearch & information: general$2bicssc 610 $aaccelerated Lawson-Hanson solver 610 $aBanach space 610 $aboundary singularities 610 $aBurgers' equation 610 $aCaputo fractional derivative 610 $aCaratheodory-Tchakaloff discrete measure compression 610 $aClenshaw-Curtis-Filon 610 $acomposite method 610 $acoupled Burgers' equation 610 $aD-optimality 610 $aderivative-free method 610 $aextreme values 610 $afinite integration method 610 $aFre?chet-derivative 610 $aG-efficiency 610 $aG-optimality 610 $agraph drawing 610 $ahigh oscillation 610 $alocal convergence 610 $amatrix norm 610 $amaxmin 610 $amethods of quasi-Newton type 610 $aMonte Carlo simulation 610 $amultiobjective programming 610 $amultiple root solvers 610 $amultiplicative algorithms 610 $amultivariate polynomial regression designs 610 $aNetwork 610 $aNon-Negative Least Squares 610 $anonlinear equations 610 $aoptimal convergence 610 $aoptimal geolocation 610 $aorder statistics 610 $aoutliers 610 $aPareto optimality 610 $aplanar visualizations 610 $aprobability computing 610 $aq-calculus 610 $arate of convergence 610 $ashifted Chebyshev polynomial 610 $asingular integral equations 610 $asupporting vector 610 $aTMS coil 610 $auniform 3D grid 610 $avolume preserving map 610 $awavelets on 3D ball 610 $aweight-function 615 7$aMathematics & science 615 7$aResearch & information: general 700 $aJäntschi$b Lorentz$4edt$01293809 702 $aRo?ca$b Daniela$4edt 702 $aJäntschi$b Lorentz$4oth 702 $aRo?ca$b Daniela$4oth 906 $aBOOK 912 $a9910557285103321 996 $aNumerical Methods$93022734 997 $aUNINA