LEADER 02601nam 2200637z- 450 001 9910557133903321 005 20210501 035 $a(CKB)5400000000040714 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68699 035 $a(oapen)doab68699 035 $a(EXLCZ)995400000000040714 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFinite Elements and Symmetry 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (104 p.) 311 08$a3-03936-020-5 311 08$a3-03936-021-3 330 $aThis Special Issue of the journal Symmetry contains a collection of papers devoted to the use of symmetry in finite element approximation of partial differential equations. More specifically, applications ranging from mechanical engineering to electromagnetics and fluid dynamics are considered. Both theoretical and computational aspects are considered. The contributions were selected to ensure the widest variety of themes. In particular, we wanted to include both theoretical papers (well posedness, stability) and numerical computations. 606 $aMathematics & science$2bicssc 606 $aResearch & information: general$2bicssc 610 $abianisotropic media 610 $acomputational design 610 $aconvergence of the approximation 610 $acorner singularity 610 $aedge-based smoothed finite element method (ES-FEM) 610 $aelectromagnetic scattering 610 $aFGMshells 610 $afinite element method 610 $afinite-element method 610 $aforce vibration 610 $aMindlin plate theory 610 $amixed interpolation of tensorial components (MITC) 610 $amoving media 610 $aOseen problem 610 $apattern formation 610 $apreconditioning 610 $arotating axisymmetric objects 610 $asymmetric boundary condition 610 $athree-layer composite shell 610 $atime-harmonic electromagnetic fields 610 $avariational formulation 610 $aweighted finite element method 610 $awell posedness 615 7$aMathematics & science 615 7$aResearch & information: general 700 $aTouzani$b Rachid$4edt$0792030 702 $aTouzani$b Rachid$4oth 906 $aBOOK 912 $a9910557133903321 996 $aFinite Elements and Symmetry$93022598 997 $aUNINA