LEADER 04951nam 2201165z- 450 001 9910557129003321 005 20210501 035 $a(CKB)5400000000040764 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68431 035 $a(oapen)doab68431 035 $a(EXLCZ)995400000000040764 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aGenomics of Bacterial Metal Resistance 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (238 p.) 311 08$a3-0365-0390-0 311 08$a3-0365-0391-9 330 $aThe importance of understanding metal-microbe interactions underlies a number of social-economic issues in the world. The antimicrobial resistance era has created a need for novel antimicrobials and within this fieldm metal and metalloid ions are promising solutions. Pollution sites, either co-contaminated with metals or with metals as the sole pollutant, contain microbes that are present as key participants, with both of these issues habing links to agriculture. Microbes also play key roles in the global geochemical cycle of many elements. Such statements solidify the need to understand metal-microbe interactions. Given that genomics has arguably become the most useful tool in biology, the application of this technology within the field of understanding metal resistance comes as no surprise. Whilst by no means comprehensive, this book provides examples of the applications of genomic approaches in the study of metal-microbe interactions. Here, we present a collection of manuscripts that highlights some present directions in the field. The book starts with a collection of three papers evaluating aspects of the genomics of the archetype metal resistant bacteria, Cuprividus metallidurans. This is followed by four studies that evaluate the mechanisms of metal resistance. The next two papers assess metal resistance in agricultural related situations, including a review on metal resistance in Listeria. The book concludes with a review on metal phytoremediation via Rhizobia and two subsequent studies of metal biotechnology relevance. 606 $aBiology, life sciences$2bicssc 606 $aResearch & information: general$2bicssc 610 $aAcidithiobacillus ferrooxidans 610 $aAcinetobacter baumannii 610 $aadaptive laboratory evolution 610 $aadsorption 610 $aantimicrobial agents 610 $aantimicrobials 610 $aarsenic 610 $aarsenic-oxidizing bacteria 610 $abiomining 610 $abiosafety 610 $abiotechnology for arsenic removal 610 $acadmium 610 $acis-hybrid strains 610 $acomparative genomic analysis 610 $acopper 610 $acopper resistance 610 $aCTnDOT 610 $aCupriavidus 610 $adraft genome sequence 610 $aEnsifer (Sinorhizobium) sp. M14 610 $aenvelope components 610 $aEscherichia coli 610 $aevolution 610 $agallium 610 $agenome manipulation 610 $agenomic island 610 $agenomic islands 610 $agenomic rearrangements 610 $aheavy metal resistance 610 $aheavy metals 610 $aheavy-metals 610 $ain situ (bio)remediation 610 $aintegrase 610 $aKeio collection 610 $alipopolysaccharide 610 $aListeria monocytogenes 610 $ametal 610 $ametal resistance 610 $ametal resistance genes 610 $ametal toxicity 610 $ametal-based antimicrobials 610 $amobile genetic element 610 $amobile genetic elements 610 $aMucilaginibacer rubeus 610 $aMucilaginibacter kameinonensis 610 $amultireplicon 610 $an/a 610 $aNanopore 610 $aphenotype microarray 610 $aplatinum resistance 610 $aproteomics 610 $aresistance 610 $aRNA-Seq 610 $aserpentine soils 610 $aserpentine vegetation 610 $asilver 610 $asilver resistance 610 $asilver toxicity 610 $asoil bioremediation 610 $aswine 610 $awater treatment 615 7$aBiology, life sciences 615 7$aResearch & information: general 700 $aTurner$b Raymond J$4edt$0284879 702 $aMengoni$b Alessio$4edt 702 $aViti$b Carlo$4edt 702 $aHuang$b Li-Nan$4edt 702 $aTurner$b Raymond J$4oth 702 $aMengoni$b Alessio$4oth 702 $aViti$b Carlo$4oth 702 $aHuang$b Li-Nan$4oth 906 $aBOOK 912 $a9910557129003321 996 $aGenomics of Bacterial Metal Resistance$93022731 997 $aUNINA