LEADER 01780nam 2200493I 450 001 9910702574903321 005 20141126100823.0 035 $a(CKB)5470000002428427 035 $a(OCoLC)896938005 035 $a(EXLCZ)995470000002428427 100 $a20141126j201401 ua 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aActive vibration control for helicopter interior noise reduction using power minimization /$fJ. Mendoza [and four others] 210 1$aHampton, Virginia :$cNational Aeronautics and Space Administration, Langley Research Center,$dJanuary 2014. 215 $a1 online resource (197 pages) $ccolor illustrations 225 1 $aNASA-CR ;$v2014-218147 300 $aTitle from title screen (viewed Nov. 26, 2014). 300 $a"January 2014." 320 $aIncludes bibliographical references (pages 187-191). 606 $aNoise reduction$2nasat 606 $aRotary wing aircraft$2nasat 606 $aAircraft compartments$2nasat 606 $aOptimal control$2nasat 606 $aStructural vibration$2nasat 606 $aVibration damping$2nasat 615 7$aNoise reduction. 615 7$aRotary wing aircraft. 615 7$aAircraft compartments. 615 7$aOptimal control. 615 7$aStructural vibration. 615 7$aVibration damping. 700 $aMendoza$b J.$0171843 712 02$aLangley Research Center, 712 02$aUnited States.$bNational Aeronautics and Space Administration, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910702574903321 996 $aActive vibration control for helicopter interior noise reduction using power minimization$93522951 997 $aUNINA LEADER 04270nam 2200949z- 450 001 9910557124703321 005 20210501 035 $a(CKB)5400000000040807 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68290 035 $a(oapen)doab68290 035 $a(EXLCZ)995400000000040807 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aEntropy Based Fatigue, Fracture, Failure Prediction and Structural Health Monitoring 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (238 p.) 311 08$a3-03943-807-7 311 08$a3-03943-808-5 330 $aTraditionally fatigue, fracture, damage mechanics are predictions are based on empirical curve fitting models based on experimental data. However, when entropy is used as the metric for degradation of the material, the modeling process becomes physics based rather than empirical modeling. Because, entropy generation in a material can be calculated from the fundamental equation of thematerial. This collection of manuscripts is about using entropy for "Fatigue, Fracture, Failure Prediction and Structural Health Monitoring". The theoretical paper in the collection provides the mathematical and physics framework behind the unified mechanics theory, which unifies universal laws of motion of Newton and laws of thermodynamics at ab-initio level. Unified Mechanics introduces an additional axis called, Thermodynamic State Index axis which is linearly independent from Newtonian space x, y, z and time. As a result, derivative of displacement with respect to entropy is not zero, in unified mechanics theory, as in Newtonian mechanics. Any material is treated as a thermodynamic system and fundamental equation of the material is derived. Fundamental equation defines entropy generation rate in the system. Experimental papers in the collection prove validity of using entropy as a stable metric for Fatigue, Fracture, Failure Prediction and Structural Health Monitoring. 606 $aHistory of engineering and technology$2bicssc 610 $aacoustic emission 610 $acopula entropy 610 $acreep strain 610 $adamage mechanics 610 $adamage state 610 $adangerous volume 610 $adeformation twinning 610 $adegradation analysis 610 $adegradation-entropy generation theorem 610 $adependence 610 $adislocation slip 610 $adual-phase steel 610 $adynamic health evaluation 610 $aentropy 610 $aentropy as damage 610 $aentropy generation 610 $aentropy increase rate 610 $afatigue 610 $afatigue crack growth rate 610 $afatigue damage 610 $afuzzy reasoning 610 $ahealth monitoring 610 $ainformation entropy 610 $ainteraction 610 $airreversible damage 610 $aJeffreys divergence 610 $alimiting state 610 $alow-cycle fatigue 610 $aMaxEnt distributions 610 $ameasure 610 $amechanothermodynamics 610 $amedium entropy alloy 610 $ametallic material 610 $amultiple degradation processes 610 $an/a 610 $aphysics of failure 610 $aplastic strain 610 $aprognosis and health management 610 $asatellite 610 $ashot peening 610 $aspectrum loading 610 $astress strain 610 $astress-strain state 610 $asurface nano-crystallization 610 $asystem failure 610 $athermodynamic entropy 610 $athermodynamics 610 $aTi-6Al-4V 610 $atribo-fatigue entropy 610 $aunified mechanics 610 $awear-fatigue damage 615 7$aHistory of engineering and technology 700 $aBasaran$b Cemal$4edt$01221196 702 $aBasaran$b Cemal$4oth 906 $aBOOK 912 $a9910557124703321 996 $aEntropy Based Fatigue, Fracture, Failure Prediction and Structural Health Monitoring$93030543 997 $aUNINA