LEADER 04385nam 2201177z- 450 001 9910557123803321 005 20231214133324.0 035 $a(CKB)5400000000040816 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68420 035 $a(EXLCZ)995400000000040816 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFluid Interfaces 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 electronic resource (232 p.) 311 $a3-03943-633-3 311 $a3-03943-634-1 330 $aFluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field. 606 $aTechnology: general issues$2bicssc 610 $apolyelectrolyte 610 $asurfactants 610 $akinetically trapped aggregates 610 $ainterfaces 610 $asurface tension 610 $ainterfacial dilational rheology 610 $aadsorption 610 $anonlinear stretching sheet 610 $aviscoelastic fluid 610 $aMHD 610 $aviscous dissipation 610 $aunderwater vehicle 610 $asea-water pump 610 $avibration isolation 610 $aflexible pipes 610 $acationic surfactants 610 $aGemini 12-2-12 surfactant 610 $adynamic surface tension 610 $amaximum bubble pressure 610 $asurface potential 610 $ananofluid 610 $astretching surface 610 $arotating fluid 610 $aHomotopy Analysis Method (HAM) 610 $aporous media 610 $amagnetohydrodynamics 610 $ahybrid nanofluid 610 $astretching cylinder 610 $aflow characteristics 610 $ananoparticles 610 $aconvective heat transfer 610 $ainterfacial tensions 610 $adilational rheology 610 $abiocompatible emulsions 610 $apartition coefficient 610 $aTween 80 610 $asaponin 610 $acitronellol glucoside 610 $aMCT oil 610 $aMiglyol 812N 610 $alipids 610 $apollutants 610 $aLangmuir monolayers 610 $aparticles 610 $arheology 610 $aneutron reflectometry 610 $aellipsometry 610 $aDPPC 610 $alipid monolayers 610 $aair/water interface 610 $aentropy 610 $asecond grade nanofluid 610 $aCattaneo-Christov heat flux model 610 $anonlinear thermal radiation 610 $aJoule heating 610 $afluid displacement 610 $ainverse Saffman?Taylor instability 610 $apartially miscible 610 $aKorteweg force 610 $agyrotactic microorganisms 610 $amicropolar magnetohydrodynamics (MHD) 610 $aMaxwell nanofluid 610 $asingle wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) 610 $athermal radiation 610 $achemical reaction 610 $amixed convection 610 $apermeability 610 $aconfinement 610 $adynamics 610 $amaterials 610 $aapplications 615 7$aTechnology: general issues 700 $aGuzmán$b Eduardo$4edt$01309882 702 $aGuzmán$b Eduardo$4oth 906 $aBOOK 912 $a9910557123803321 996 $aFluid Interfaces$93038779 997 $aUNINA