LEADER 01739nam 2200469I 450 001 9910711988703321 005 20190226134648.0 035 $a(CKB)5470000002488201 035 $a(OCoLC)1088505035 035 $a(EXLCZ)995470000002488201 100 $a20190226j199804 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA cryogenic GaAs PHEMT/Ferroelectric Ku-Band tunable oscillator /$fRobert R. Romanofsky, Fred W. Van Keuls, and Felix A. Miranda 210 1$aCleveland, Ohio :$cNational Aeronautics and Space Administration, Lewis Research Center,$dApril 1998. 215 $a1 online resource (5 pages, 1 unnumbered page) $cillustrations 225 1 $aNASA/TM ;$v1998-206967 300 $a"Prepared for the 3rd European Workshop on Low Temperature Electronics sponsored by the Dipartimento di Fisica, Universita' degli Sturh di Milan and IEEE Electron Devices Society San Miniato, Tuscany, Italy, June 24-26, 1998." 320 $aIncludes bibliographical references (page 5). 606 $aCryogenics$2nasat 606 $aThin films$2nasat 606 $aTuning$2nasat 606 $aGallium arsenides$2nasat 606 $aMicrowave frequencies$2nasat 615 7$aCryogenics. 615 7$aThin films. 615 7$aTuning. 615 7$aGallium arsenides. 615 7$aMicrowave frequencies. 700 $aRomanofsky$b Robert R.$01396482 702 $aVan Keuls$b Fred W. 702 $aMiranda$b Fe?lix A. 712 02$aLewis Research Center, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910711988703321 996 $aA cryogenic GaAs PHEMT$93456673 997 $aUNINA LEADER 04734nam 2201057z- 450 001 9910557116703321 005 20210501 035 $a(CKB)5400000000040879 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68688 035 $a(oapen)doab68688 035 $a(EXLCZ)995400000000040879 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCytobiology of Human Prostate Cancer Cells and Its Clinical Applications 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (184 p.) 311 08$a3-03936-034-5 311 08$a3-03936-035-3 330 $aThe number of males diagnosed with prostate cancer (PCa) is increasing all over the world. Most patients with early-stage PCa can be treated with appropriate therapy, such as radical prostatectomy or irradiation. On the other hand, androgen deprivation therapy (ADT) is the standard systemic therapy given to patients with advanced PCa. ADT induces temporary remission, but the majority of patients (approximately 60%) eventually progress to castration-resistant prostate cancer (CRPC), which is associated with a high mortality rate. Generally, well-differentiated PCa cells are androgen dependent, i.e., androgen receptor (AR) signalling regulates cell cycle and differentiation. The loss of AR signalling after ADT triggers androgen-independent outgrowth, generating poorly differentiated, uncontrollable PCa cells. Once PCa cells lose their sensitivity to ADT, effective therapies are limited. In the last few years, however, several new options for the treatment of CRPC have been approved, e.g., the CYP17 inhibitor, the AR antagonist, and the taxane. Despite this progress in the development of new drugs, there is a high medical need for optimizing the sequence and combination of approved drugs. Thus, the identification of predictive biomarkers may help in the context of personalized medicine to guide treatment decisions, improve clinical outcomes, and prevent unnecessary side effects. In this Special Issue Book, we focused on the cytobiology of human PCa cells and its clinical applications to develop a major step towards personalized medicine matched to the individual needs of patients with early-stage and advanced PCa and CRPC. We hope that this Special Issue Book attracts the attention of readers with expertise and interest in the cytobiology of PCa cells. 606 $aMedicine$2bicssc 610 $aabiraterone 610 $aAKR1C3 610 $aandrogen deprivation therapy 610 $aandrogen receptor 610 $aandrogen receptor dependency 610 $aandrogen sensitivity 610 $aanimal model 610 $aapoptosis 610 $aautophagy 610 $acabazitaxel 610 $aCAF 610 $acastration resistant prostate cancer 610 $acastration-resistant prostate cancer 610 $aCaveolin-1 610 $aCCL2 610 $aCCL22 610 $aCCL5 610 $achemotherapy 610 $aCW069 610 $acytokine 610 $adiet 610 $adocetaxel 610 $adocetaxel resistance 610 $aenzalutamide 610 $aEPI-002 610 $aepigenetics 610 $afat 610 $afibroblast 610 $afibroblast growth factor 610 $afibroblast growth factor receptor 610 $afibroblast-dependent androgen receptor activation 610 $afibroblasts 610 $aG1 cell cycle arrest 610 $ahigh-fat diet 610 $ahormone-nai?ve prostate cancer 610 $aimmune cells 610 $aimmunohistochemistry 610 $ain vitro 610 $ain vivo 610 $ainflammation 610 $aKIFC1 610 $aLSD1 610 $amigration 610 $amouse 610 $an/a 610 $aobesity 610 $aP-glycoprotein 610 $apirfenidone 610 $aprostate cancer 610 $aprostate-specific antigen 610 $aradiotherapy 610 $aresistance 610 $asplice variant 610 $atestosterone 610 $aTGF?1 610 $atime to PSA nadir 610 $atissue microarray 610 $aTP53-regulated inhibitor of apoptosis 1 610 $atumour microenvironment 610 $atumour stroma 615 7$aMedicine 700 $aIshii$b Kenichiro$4edt$01299430 702 $aIshii$b Kenichiro$4oth 906 $aBOOK 912 $a9910557116703321 996 $aCytobiology of Human Prostate Cancer Cells and Its Clinical Applications$93025151 997 $aUNINA