LEADER 09289nam 2200625 450 001 9910555250603321 005 20220926163448.0 010 $a1-119-52715-5 010 $a1-119-52719-8 010 $a1-119-52714-7 035 $a(CKB)4940000000617077 035 $a(MiAaPQ)EBC6795951 035 $a(Au-PeEL)EBL6795951 035 $a(OCoLC)1285169734 035 $a(EXLCZ)994940000000617077 100 $a20220719d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHarmonic modeling of voltage source converters using simple numerical methods /$fRyan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Incorporated,$d[2021] 210 4$d©2021 215 $a1 online resource (419 pages) 225 1 $aIEEE Press. 311 1 $a1-119-52713-9 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Symbols -- Chapter 1 Fundamental Theory -- 1.1 Background -- 1.2 Definition of Harmonics -- 1.3 Fourier Series -- 1.3.1 Trigonometric Form -- 1.3.2 Phasor Form -- 1.3.3 Exponential Form -- 1.4 Waveform Symmetry -- 1.4.1 Even Symmetry -- 1.4.2 Odd Symmetry -- 1.4.3 Half?Wave Symmetry -- 1.5 Phase Sequence of Harmonics -- 1.6 Frequency Domain and Harmonic Domain -- 1.7 Power Definitions -- 1.7.1 Average Power -- 1.7.2 Apparent and Reactive Power -- 1.8 Harmonic Indices -- 1.8.1 Total Harmonic Distortion (THD) -- 1.8.2 Total Demand Distortion (TDD) -- 1.8.3 True Power Factor -- 1.9 Detrimental Effects of Harmonics -- 1.9.1 Resonance -- 1.9.2 Misoperations of Meters and Relays -- 1.9.3 Harmonics Impact on Motors -- 1.9.4 Harmonics Impact on Transformers -- 1.10 Characteristic Harmonic and Non?Characteristic Harmonic -- 1.11 Harmonic Current Injection Method -- 1.12 Steady?State vs. Transient Response -- 1.13 Steady?State Modeling -- 1.14 Large?Signal Modeling vs. Small?Signal Modeling -- 1.15 Discussion of IEEE Standard (STD) 519 -- 1.16 Supraharmonics -- Chapter 2 Power Electronics Basics -- 2.1 Some Basics -- 2.2 Semiconductors vs. Wide Bandgap Semiconductors -- 2.3 Types of Static Switches -- 2.3.1 Uncontrolled Static Switch -- 2.3.2 Semi?Controllable Switches -- 2.3.3 Controlled Switch -- 2.4 Combination of Switches -- 2.5 Classification Based on Commutation Process -- 2.6 Voltage Source Converter vs. Current Source Converter -- Chapter 3 Basic Numerical Iterative Methods -- 3.1 Definition of Error -- 3.2 The Gauss-Seidel Method -- 3.3 Predictor?Corrector -- 3.4 Newton's Method -- 3.4.1 Root Finding -- 3.4.2 Numerical Integration -- 3.4.3 Power Flow -- 3.4.4 Harmonic Power Flow -- 3.4.5 Shooting Method -- 3.4.6 Advantages of Newton's Method -- 3.4.7 Quasi?Newton Method. 327 $a3.4.8 Limitation of Newton's Method -- 3.5 PSO -- Chapter 4 Matrix Exponential -- 4.1 Definition of Matrix Exponential -- 4.2 Evaluation of Matrix Exponential -- 4.2.1 Inverse Laplace Transform -- 4.2.2 Cayley-Hamilton Method -- 4.2.3 Padé Approximation -- 4.2.4 Scaling and Squaring -- 4.3 Krylov Subspace Method -- 4.4 Krylov Space Method with Restarting -- 4.5 Application of Augmented Matrix on DC?DC Converters -- 4.6 Runge-Kutta Methods -- Chapter 5 Modeling of Voltage Source Converters -- 5.1 Single?Phase Two?Level VSCs -- 5.1.1 Switching Functions -- 5.1.2 Switched Circuits -- 5.2 Three?Phase Two?Level VSCs -- 5.3 Three?Phase Multilevel Voltage Source Converter -- 5.3.1 Multilevel PWM -- 5.3.2 Diode Clamped Multilevel VSCs -- 5.3.3 Flying Capacitor Multilevel VSCs -- 5.3.4 Cascaded Multi?Level VSCs -- 5.3.5 Modular Multi?Level VSC -- Chapter 6 Frequency Coupling Matrices -- 6.1 Construction of FCM in the Harmonic Domain -- 6.2 Construction of FCM in the Time Domain -- Chapter 7 General Control Approaches of a VSC -- 7.1 Reference Frame -- 7.1.1 Stationary?abc Frame -- 7.1.2 Stationary?< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- ?? Frame -- 7.1.3 Synchronous?< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- dq Frame -- 7.1.4 Phase?Locked Loop -- 7.2 Control Strategies -- 7.2.1 Vector?Current Controller -- 7.2.2 Direct Power Controller -- 7.2.3 DC?bus Voltage Controller -- 7.2.4 Circulating Current Controller -- Chapter 8 Generalized Steady?State Solution Procedure for Closed?Loop Converter Systems -- 8.1 Introduction -- 8.2 Generalized Procedure -- 8.2.1 Step 1: Determine How and Where to Break the Loop -- 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible. 327 $a8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled -- 8.2.4 Step 4: Formulate the Mismatch Equations -- 8.2.5 Step 5: Iterate to Find the Solution -- 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures -- 8.3.1 Steady?State Methods Derived from Loop?Breaking 1 Method -- 8.3.2 Steady?State Methods Derived from Loop?Breaking 2 Method -- 8.4 The Loop?Breaking 3 Method -- Chapter 9 Loop?Breaking 1 Method -- 9.1 A Typical Two?Level VSC with AC Current Control and DC Voltage Control -- 9.2 Loop?Breaking 1 Method for a Two?Level VSC -- 9.2.1 Block 1 -- 9.2.2 Current Controller Block -- 9.2.3 Voltage Controller Block -- 9.3 Solution Flow Diagram -- 9.3.1 Initialization -- 9.3.2 Jacobian Matrix -- 9.3.3 Number of Modulating Voltage Harmonics to be Included -- Chapter 10 Loop?Breaking 2 Method for Solving a VSC -- 10.1 Modeling for a Closed?Loop DC?DC Converter -- 10.1.1 Model of the Buck Converter -- 10.1.2 Constraints of Steady?State -- 10.1.3 Switching Time Constraints -- 10.1.4 Solution Flow Diagram -- 10.2 Two?Level VSC Modeling: Open?Loop Equations -- 10.2.1 Steady?State Constraints -- 10.2.2 Switching Time Constraints -- 10.2.3 Solution Flow Diagram -- 10.2.4 Initialization -- 10.2.5 Jacobian Matrix -- 10.3 Comparison Between the LB 1 and LB 2 Methods -- 10.3.1 Case #1: Balanced System -- 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half?Wave Symmetry -- 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry -- 10.4 Large?Signal Modeling for Line?Commutated Power Converter -- 10.4.1 Discontinuous Conduction Mode -- 10.4.2 Continuous Conduction Mode -- 10.4.3 Steady?State Constraint Equations -- 10.4.4 General Comments -- Chapter 11 Loop?Breaking 3 Method -- 11.1 OpenDSS -- 11.2 Interfacing OpenDSS with MATLAB -- 11.3 Interfacing OpenDSS with Harmonic Models of VSCs. 327 $aChapter 12 Small?Signal Harmonic Model of a VSC -- 12.1 Problem Statement -- 12.2 Gauss-Seidel LB 3 and Newton LB 3 -- 12.2.1 Current Injection Method -- 12.2.2 Norton Circuit Method -- 12.3 Small?Signal Analysis of DC?DC Converter -- 12.4 Small?Signal Analysis of a Two?Level VSC -- 12.4.1 Approach from Section 12.3 -- 12.4.2 Simpler Approach -- Chapter 13 Parameter Estimation for a Single VSC -- 13.1 Background on Parameter Estimation -- 13.2 Parameter Estimator Based on White?Box?and?Black?Box Models -- 13.3 Estimation Validations -- 13.3.1 Experimental Validation -- 13.3.2 PSCAD/EMTDC Validation -- Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation -- 14.1 Introduction of Deep Learning -- 14.2 Domain Adaptation -- 14.3 Parameter Estimation for Multiple VSCs -- 14.4 Notations for DA -- 14.5 Supervised Domain Adaptation for Regression -- 14.6 Supervised Domain Adaptation for Classification -- 14.7 Test Setup -- 14.7.1 Data Generator -- 14.7.2 Data Preprocessing -- 14.8 Performance Metrics -- 14.8.1 R square (Regression) -- 14.8.2 Mean Absolute Percentage Error, MAPE (Regression) -- 14.8.3 Accuracy (Classification) -- 14.8.4 F1 score (Classification) -- 14.9 Test Results -- 14.9.1 Classification Task on Multiple VSC -- 14.9.2 Regression Task on Multiple VSC -- 14.10 Software for Running the Codes -- 14.11 Implementation of Domain Adaptation -- 14.11.1 Data Generation -- 14.11.2 Regression -- 14.11.3 Classification Network -- References -- Index -- EULA. 410 0$aIEEE Press. 606 $aHarmonics (Electric waves)$xMathematical models 606 $aElectromagnetic interference$xMathematical models 606 $aElectric power-plants$xEquipment and supplies 606 $aElectric current converters$xMathematical models 606 $aNumerical analysis 608 $aElectronic books. 615 0$aHarmonics (Electric waves)$xMathematical models. 615 0$aElectromagnetic interference$xMathematical models. 615 0$aElectric power-plants$xEquipment and supplies. 615 0$aElectric current converters$xMathematical models. 615 0$aNumerical analysis. 676 $a621.3815322 700 $aLian$b Ryan Kuo-Lung$01219947 702 $aLin$b Bing Hao 702 $aSubroto$b Ramadhani Kurniawan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555250603321 996 $aHarmonic modeling of voltage source converters using simple numerical methods$92901479 997 $aUNINA LEADER 01866nam 2200373Ia 450 001 996386973903316 005 20221108102650.0 035 $a(CKB)4940000000081240 035 $a(EEBO)2248500503 035 $a(OCoLC)13725272 035 $a(EXLCZ)994940000000081240 100 $a19860612d1661 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 00$aLigeancia lugens, or, Loyaltie lamenting the many great mischiefs and inconveniences which will fatally and inevitably follow the taking away of the royal pourveyances and tenures in capite and by knight-service, which being ancient and long before the conquest were not then, or are now, any slavery, publick or general grievence$b[electronic resource] $ewith some expedients humbly offered for the prevention thereof /$fby Fabian Philipps 210 $aLondon $cPrinted by J.M. for Andrew Crook and are to be sold at his shop ...$d1661 215 $a[2], 66 p 300 $aReproduction of original in Huntington Library. 330 $aeebo-0113 606 $aLand tenure$xLaw and legislation$zEngland$vEarly works to 1800 606 $aFeudalism$zEngland$vEarly works to 1800 607 $aGreat Britain$xPolitics and government$y1660-1688 615 0$aLand tenure$xLaw and legislation 615 0$aFeudalism 700 $aPhilipps$b Fabian$f1601-1690.$01002371 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bEAA 801 2$bWaOLN 906 $aBOOK 912 $a996386973903316 996 $aLigeancia lugens, or, Loyaltie lamenting the many great mischiefs and inconveniences which will fatally and inevitably follow the taking away of the royal pourveyances and tenures in capite and by knight-service, which being ancient and long before the conquest were not then, or are now, any slavery, publick or general grievence$92341898 997 $aUNISA