LEADER 06312nam 2200505 450 001 9910555154903321 005 20220423093746.0 010 $a1-119-69989-4 010 $a1-119-69991-6 010 $a1-119-69987-8 035 $a(CKB)4100000011995559 035 $a(MiAaPQ)EBC6692405 035 $a(Au-PeEL)EBL6692405 035 $a(OCoLC)1263869041 035 $a(EXLCZ)994100000011995559 100 $a20220423d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPedestrian inertial navigation with self-contained aiding /$fYusheng Wang and Andrei M. Shkel 210 1$aHoboken, New Jersey :$cIEEE Press :$cWiley,$d[2021] 210 4$dİ2021 215 $a1 online resource (193 pages) 225 1 $aIEEE Press series on sensors 311 $a1-119-69955-X 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Author Biographies -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Navigation -- 1.2 Inertial Navigation -- 1.3 Pedestrian Inertial Navigation -- 1.3.1 Approaches -- 1.3.2 IMU Mounting Positions -- 1.3.3 Summary -- 1.4 Aiding Techniques for Inertial Navigation -- 1.4.1 Non?self?contained Aiding Techniques -- 1.4.1.1 Aiding Techniques Based on Natural Signals -- 1.4.1.2 Aiding Techniques Based on Artificial Signals -- 1.4.2 Self?contained Aiding Techniques -- 1.5 Outline of the Book -- References -- References -- Chapter 2 Inertial Sensors and Inertial Measurement Units -- 2.1 Accelerometers -- 2.1.1 Static Accelerometers -- 2.1.2 Resonant Accelerometers -- 2.2 Gyroscopes -- 2.2.1 Mechanical Gyroscopes -- 2.2.2 Optical Gyroscopes -- 2.2.2.1 Ring Laser Gyroscopes -- 2.2.2.2 Fiber Optic Gyroscopes -- 2.2.3 Nuclear Magnetic Resonance Gyroscopes -- 2.2.4 MEMS Vibratory Gyroscopes -- 2.2.4.1 Principle of Operation -- 2.2.4.2 Mode of Operation -- 2.2.4.3 Error Analysis -- 2.3 Inertial Measurement Units -- 2.3.1 Multi?sensor Assembly Approach -- 2.3.2 Single?Chip Approach -- 2.3.3 Device Folding Approach -- 2.3.4 Chip?Stacking Approach -- 2.4 Conclusions -- References -- Chapter 3 Strapdown Inertial Navigation Mechanism -- 3.1 Reference Frame -- 3.2 Navigation Mechanism in the Inertial Frame -- 3.3 Navigation Mechanism in the Navigation Frame -- 3.4 Initialization -- 3.4.1 Tilt Sensing -- 3.4.2 Gyrocompassing -- 3.4.3 Magnetic Heading Estimation -- 3.5 Conclusions -- References -- Chapter 4 Navigation Error Analysis in Strapdown Inertial Navigation -- 4.1 Error Source Analysis -- 4.1.1 Inertial Sensor Errors -- 4.1.2 Assembly Errors -- 4.1.3 Definition of IMU Grades -- 4.1.3.1 Consumer Grade -- 4.1.3.2 Industrial Grade -- 4.1.3.3 Tactical Grade -- 4.1.3.4 Navigation Grade. 327 $a4.2 IMU Error Reduction -- 4.2.1 Six?Position Calibration -- 4.2.2 Multi?position Calibration -- 4.3 Error Accumulation Analysis -- 4.3.1 Error Propagation in Two?Dimensional Navigation -- 4.3.2 Error Propagation in Navigation Frame -- 4.4 Conclusions -- References -- Chapter 5 Zero?Velocity Update Aided Pedestrian Inertial Navigation -- 5.1 Zero?Velocity Update Overview -- 5.2 Zero?Velocity Update Algorithm -- 5.2.1 Extended Kalman Filter -- 5.2.2 EKF in Pedestrian Inertial Navigation -- 5.2.3 Zero?Velocity Update Implementation -- 5.3 Parameter Selection -- 5.4 Conclusions -- References -- Chapter 6 Navigation Error Analysis in the ZUPT?Aided Pedestrian Inertial Navigation -- 6.1 Human Gait Biomechanical Model -- 6.1.1 Foot Motion in Torso Frame -- 6.1.2 Foot Motion in Navigation Frame -- 6.1.3 Parameterization of Trajectory -- 6.2 Navigation Error Analysis -- 6.2.1 Starting Point -- 6.2.2 Covariance Increase During Swing Phase -- 6.2.3 Covariance Decrease During the Stance Phase -- 6.2.4 Covariance Level Estimation -- 6.2.5 Observations -- 6.3 Verification of Analysis -- 6.3.1 Numerical Verification -- 6.3.1.1 Effect of ARW -- 6.3.1.2 Effect of VRW -- 6.3.1.3 Effect of RRW -- 6.3.2 Experimental Verification -- 6.4 Limitations of the ZUPT Aiding Technique -- 6.5 Conclusions -- References -- Chapter 7 Navigation Error Reduction in the ZUPT?Aided Pedestrian Inertial Navigation -- 7.1 IMU?Mounting Position Selection -- 7.1.1 Data Collection -- 7.1.2 Data Averaging -- 7.1.3 Data Processing Summary -- 7.1.4 Experimental Verification -- 7.2 Residual Velocity Calibration -- 7.3 Gyroscope G?Sensitivity Calibration -- 7.4 Navigation Error Compensation Results -- 7.5 Conclusions -- References -- Chapter 8 Adaptive ZUPT?Aided Pedestrian Inertial Navigation -- 8.1 Floor Type Detection -- 8.1.1 Algorithm Overview -- 8.1.2 Algorithm Implementation. 327 $a8.1.2.1 Data Partition -- 8.1.2.2 Principal Component Analysis -- 8.1.2.3 Artificial Neural Network -- 8.1.2.4 Multiple Model EKF -- 8.1.3 Navigation Result -- 8.1.4 Summary -- 8.2 Adaptive Stance Phase Detection -- 8.2.1 Zero?Velocity Detector -- 8.2.2 Adaptive Threshold Determination -- 8.2.3 Experimental Verification -- 8.2.4 Summary -- 8.3 Conclusions -- References -- Chapter 9 Sensor Fusion Approaches -- 9.1 Magnetometry -- 9.2 Altimetry -- 9.3 Computer Vision -- 9.4 Multiple?IMU Approach -- 9.5 Ranging Techniques -- 9.5.1 Introduction to Ranging Techniques -- 9.5.1.1 Time of Arrival -- 9.5.1.2 Received Signal Strength -- 9.5.1.3 Angle of Arrival -- 9.5.2 Ultrasonic Ranging -- 9.5.2.1 Foot?to?Foot Ranging -- 9.5.2.2 Directional Ranging -- 9.5.3 Ultrawide Band Ranging -- 9.6 Conclusions -- References -- Chapter 10 Perspective on Pedestrian Inertial Navigation Systems -- 10.1 Hardware Development -- 10.2 Software Development -- 10.3 Conclusions -- References -- Index -- IEEE Press Series on Sensors -- EULA. 410 0$aIEEE Press series on sensors. 606 $aPedestrian inertial navigation systems 608 $aElectronic books. 615 0$aPedestrian inertial navigation systems. 676 $a910.285 700 $aWang$b Yusheng$f1992-$01222008 702 $aShkel$b Andrei 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555154903321 996 $aPedestrian inertial navigation with self-contained aiding$92833950 997 $aUNINA